
  

Abstract— Current clinical practice relies on clinical history to 

determine the time since stroke onset (TSS). Imaging-based 

determination of acute stroke onset time could provide critical 

information to clinicians in deciding stroke treatment options such 

as thrombolysis. Patients with unknown or unwitnessed TSS are 

usually excluded from thrombolysis, even if their symptoms began 

within the therapeutic window. In this work, we demonstrate a 

machine learning approach for TSS classification using routinely 

acquired imaging sequences. We develop imaging features from 

the magnetic resonance (MR) images and train machine learning 

models to classify TSS. We also propose a deep learning model to 

extract hidden representations for the MR perfusion-weighted 

images and demonstrate classification improvement by 

incorporating these additional deep features. The cross-validation 

results show that our best classifier achieved an area under the 

curve of 0.765, with a sensitivity of 0.788 and a negative predictive 

value of 0.609, outperforming existing methods. We show that the 

features generated by our deep learning algorithm correlate with 

MR imaging features, and validate the robustness of the model on 

imaging parameter variations (e.g., year of imaging). This work 

advances magnetic resonance imaging (MRI) analysis one step 

closer to an operational decision support tool for stroke treatment 

guidance.  
 

 
Index Terms— Deep learning, autoencoder, acute ischemic 
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I. INTRODUCTION 

ith approximately 795,000 new cases each year, stroke is 

the fifth leading cause of death and the primary cause of 

long-term disability in the United States [1]. Acute stroke 

treatments focus on restoring blood flow to hypoperfused 

regions to minimize infarction (i.e., tissue death). Intravenous 

(IV) tissue plasminogen activator (tPA) remains the dominant 

thrombolytic treatment for acute stroke, with a strict time usage 

guideline (no more than 4.5 hours from witnessed stroke 

symptom onset, i.e., time-since-stroke (TSS) < 4.5hrs) due to 

the increased risk of hemorrhage when administered beyond 
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that time interval. Mechanical thrombectomy (clot retrieval) is 

an alternative or adjunct therapy to IV tPA, yet its optimal a 

treatment time window remains uncertain [2]. Although IV tPA 

administration is the most common clinical therapy in most 

stroke centers, about 30% of the population cannot receive IV 

tPA because of unknown TSS (e.g., wake-up strokes or 

unwitnessed strokes). These patients are ineligible for tPA 

treatment despite the fact that their strokes may have actually 

occurred within the treatment window [3].  

Previous work has argued for administering tPA based on a 

“tissue clock” determined via image analysis [4]. Studies are 

underway to investigate the use of a simple imaging feature, a 

mismatch pattern between magnetic resonance (MR) diffusion 

weighted imaging (DWI) and fluid attenuated inversion 

recovery (FLAIR) imaging, to estimate TSS. This method is 

based on the fact that the ischemic tissue is nearly immediately 

visible in DWI at stroke onset whereas it takes 3-4 hours for the 

ischemic tissue to appear in FLAIR [5]–[8]. The mismatch 

pattern is known as “DWI-FLAIR mismatch,” which is defined 

as the presence of visible acute ischemic lesions on DWI with 

no traceable hyperintensity in the corresponding region on 

FLAIR imaging (Fig. 1). Several clinical trials are ongoing to 

evaluate this mismatch method and determine if it is a suitable 

technique to apply on unwitnessed acute stroke patients in 

clinical settings [9]–[11]. While this is the current state-of-the-

art method for determining eligibility for thrombolytic therapy 

in cases of unknown TSS, computing mismatch using MR 

imaging is a difficult task that requires extensive training and 
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Fig. 1. Examples of DWI-FLAIR mismatch. LEFT: presence of DWI-FLAIR 
mismatch (TSS = 1hr); RIGHT: absence of DWI-FLAIR mismatch (TSS = 

8hrs). Hyperintensities are indicated by the red arrows. 



for which clinician inter-observer agreement has been found to 

be only moderate [12], [13]. Most of the previous studies [6]–

[8] reported that the mismatch method could only achieve a 

specificity of 0.60 to 0.80 with a moderate sensitivity of 0.5 to 

0.6 and a moderate negative predictive value (NPV) of 0.2 to 

0.5. One study reported an area under the receiver operator 

curve (AUC) of 0.58 [8]. The preliminary work of the DWI-

FLAIR mismatch method demonstrates a potential opportunity 

for using image analysis to classify TSS. However, the 

mismatch method may be too stringent, and therefore miss 

individuals who could benefit from thrombolytic therapy [14].  

A recent study has shown that lesion water uptake obtained 

from Computed Tomography (CT) images may estimate TSS 

more accurately than MRI [15], yet CT research on TSS 

classification is limited.  Furthermore, many stroke centers skip 

CT imaging and obtain only MRI prior to stroke intervention to 

save time and because it provides more information for clinical 

diagnosis.  

Machine learning models have been applied widely and can 

achieve good classification performance for problems in the 

healthcare domain because of their ability to learn and utilize 

patterns from data to make predictions. In particular, recent 

developments in an area of machine learning, deep learning 

[16], have drawn significant research interest because of the 

technique’s ability to automatically learn feature detectors 

specific to the data for classification, achieving state-of-the-art 

performance in challenging medical imaging problems (e.g., 

brain tumor segmentation [17], high-resolution histological 

segmentation [18], organ classification [19], retinal image 

anomaly detection [20], etc.).  

Predictive models have been made in attempt to predict 

stroke patient outcomes (e.g., mortality) using basic imaging 

features (e.g., lesion volume) [21], [22]. While much work has 

been done in predicting stroke patient outcome and treatment 

response, there is limited work in determining TSS using MR 

perfusion-weighted images (PWIs). These images may contain 

information that encodes TSS [23]–[25]. Ho, et al. [26] have 

previously shown the potential of classifying TSS from MR 

images using only a simple feature (i.e., mean intensity value) 

in a dataset of 105 patients. In the current work, we built off of 

this preliminary analysis by developing a set of hundreds of 

imaging features and analyzed the performance on a larger 

acute stroke patient dataset. We developed a deep learning 

algorithm based on an autoencoder architecture [27] to extract 

latent representative imaging features (i.e., deep features) from 

PWIs and evaluate the effectiveness of classifiers with and 

without the deep features to classify TSS.  

In summary, the main contributions of this work are: 

1. We developed a set of imaging features from the MR images 

(DWI, ADC, and FLAIR) and the perfusion parameter maps 

(derived from the PWIs) and compared five machine learning 

models on TSS classification using these imaging features. 

2. We proposed a deep learning model with training patch 

coupling strategies to learn latent deep features from four-

dimension (4-D) PWIs that can be used in TSS classification. 

3. We compared our proposed machine learning models (with 

and without deep features) and show that the deep features 

improve TSS classification and the models outperform the 

DWI-FLAIR mismatch method. 

 This work is the illustration of machine learning models on 

TSS classification using imaging features derived from the MR 

images and the perfusion parameter maps. The results show that 

imaging features derived from stroke images can be predictive 

of TSS, demonstrating a possible alternative to DWI-FLAIR 

mismatch, which is known to be difficult to evaluate 

consistently. This work represents a step towards an operational 

decision support tool for guiding acute stroke treatment.  

II. MATERIALS AND IMAGE PREPROCESSING 

A. Patient Cohort and Imaging Data 

Under institutional review board (UCLA  IRB#18-000329) 

approval, a total of 181 patient MR images were examined from 

the University of California-Los Angeles picture archiving and 

communication system (PACS) between December 2011 and 

December 2017. The inclusion criteria were all patients with: 

1) acute ischemic stroke due to middle cerebral artery (MCA) 

occlusion; 2) a recorded time of observed stroke symptom 

onset; 3) a recorded time of initial pretreatment imaging; and 4) 

a complete MR imaging sequence set (PWI, FLAIR, DWI, and 

ADC). The presence of a DWI-FLAIR mismatch was 

determined [28] by an expert neuroradiologist (Dr. S. El-Saden) 

using Medical Image Processing, Analysis, and Visualization 

(MIPAV) software [29], following the published protocol [8]. 

The presence of a DWI-FLAIR mismatch was labeled 1. The 

absence of a DWI-FLAIR mismatch was labeled 0.  Patients’ 

TSS was calculated by subtracting the time at which the stroke 

symptoms were first observed from the time at which the first 

imaging was obtained. We followed the existing DWI-FLAIR 

TSS classification task [8] to binarize the TSS into two classes: 

positive (<4.5hrs) and negative (≥4.5hrs). After applying the 

inclusion criteria, a total of 131 patients were retrieved for the 

analysis (85 positive class; 46 negative class). This cohort 

subset was used to build the models for TSS classification. The 

patient characteristics are summarized in Table I.  

TABLE I 
ISCHEMIC STROKE PATIENT COHORT CHARACTERISTICS 

 Patients (n = 131) 

Demographics  
Age 72.9±13.9 

Gender 72 females 

Clinical Presentation  

Time since stroke 

(continuous) 
256±247 minutes 

NIHSS† 10.1±7.87 

Atrial fibrillation 37 

Hypertension 87 

Stroke location (hemisphere)  
Left 65 

Right 66 

Classification Label  

Time since stroke 
(binary) 

<4.5hrs (85); ≥4.5hrs (46) 

† NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) - 42 
(severe stroke) 



All patients underwent MRI using a 1.5 or 3 Tesla echo 

planar MR imaging scanner (Siemens Medical Systems); 

scanning was performed with 12-channel head coils. The PWIs 

were acquired using a repetition time (TR) range of 1,490 to 

2,640 ms and an echo time (TE) range of 23 to 50 ms. The pixel 

dimension of the PWIs varied from 1.72 × 1.72 × 6.00 to 2.61 

× 2.61 × 6.00 mm. The FLAIR images were acquired using a 

TR range of 8,000 to 9,000 ms and a TE range of 88 to 134 ms. 

The pixel dimension of the FLAIR images varied from 0.688 × 

0.688 ×  6.00 to 0.938 ×  0.938 ×  6.50 mm. The DWI/ADC 

images were acquired using a TR range of 4,000 to 9,000 ms 

and a TE range of 78 to 122 ms. The pixel dimension of the 

DWI images varied from 0.859 × 0.859 × 6.00 to 1.85 × 1.85 

× 6.50 mm. We note that in MR imaging, each brain voxel has 

three spatial dimensions for three axes (x-, y-, z-). We ignore 

the z-dimension in data generation (i.e., patch creation) due to 

slice thickness. Thus, our notation is simplified as we may 

denote the size of a “voxel” as 1 x 1 only. 

B. Image Preprocessing 

Intra-patient registration of pre-treatment PWIs, DWI, ADC 

and FLAIR images was performed with a six degree of freedom 

rigid transformation using FMRIB’s Linear Image Registration 

Tool (FLIRT) [30]. Through the registration, each voxel in the 

PWI, DWI, and ADC images was made to correspond to the 

same anatomical location in FLAIR. Gaussian filters with a size 

of 2.35 mm full width at half maximum (FWHM) were applied 

to remove spatial noise. Skulls and different tissue type masks 

(e.g., cerebrospinal fluid (CSF), gray/white matter) were 

identified using Statistical Parametric Mapping 12 (SPM12) 

[31]. CSF was excluded from this analysis. Perfusion parameter 

maps were generated using block-circulant singular value 

decomposition (bSVD) as provided by the sparse perfusion 

deconvolution toolbox (SPD) [32]; the arterial input function 

(AIF) was generated by the ASIST-Japan Perfusion mismatch 

analyzer (PMA) [33]. All DWI, ADC, and FLAIR intensity 

values were standardized to zero-mean and unit-variance 

globally on a brain-by-brain basis. The standardized images 

were used in the feature generation step for TSS classification.  

III. METHODS 

Inspired by the extensive research work in other medical 

domains (e.g., lung nodule detection [34]), in which hundreds 

of hand-crafted imaging features were defined for 

classification, we propose to train machine learning models 

with imaging features derived from MR images and perfusion 

parameter maps to classify TSS. This section is divided into 

four parts: A. Imaging Feature Generation describes the set of 

baseline imaging features and deep learning features for TSS 

classification; B. Machine Learning Models for TSS 

Classification describes the details of using machine learning 

models for TSS classification; C. Experimental Setup describes 

the implementation details of the deep learning models, the 

machine learning model training configuration; D. Evaluation 

describes the evaluation analysis and the metrics. The overview 

of the TSS classification is shown in Figure 2. 

A. Imaging Feature Generation 

PWIs are spatio-temporal imaging data (4-D) that show the 

flow of a gadolinium-based contrast bolus into and out of the 

 

Fig. 2. The overview of the TSS classification. The classification involved four steps: (1) ROI generation, (2) deep AE map learning, (3) feature generation, and 

(4) TSS classification. The ROI generation step defines the region of interest (Tmax > 6s) for generating imaging features. The deep AE map learning step generates 
new feature maps using deep autoencoders (AEs). The feature generation step includes imaging feature generation from the MR images, the perfusion parameter 

maps and the deep AE maps, resulting in a set of 104 baseline imaging features and 384 deep AE features. The TSS classification step trains five machine learning 

models with the imaging features to classify TSS<4.5 hrs.  



brain over time. They contain concentration time curves (CTCs) 

for each brain voxel, that describe the flow of the contrast (i.e. 

signal intensity change) over time. The global arterial input 

function (AIF) describes the contrast input to the vasculature 

(within a voxel) at a certain time t and it is defined in the MCA 

[35]. Perfusion parameter maps [36] can be derived from the 

AIF and CTCs, including cerebral blood volume (CBV), 

cerebral blood flow (CBF), mean transit time (MTT), time-to-

peak (TTP), and time-to-maximum (Tmax). Briefly, CBV 

describes the total volume of flowing blood in a given volume 

of a voxel and CBF describes the rate of blood delivery to the 

brain tissue within a volume of a voxel. CBV and CBF are used 

to derive MTT, which represents the average time it takes the 

contrast to travel through the tissue volume of a voxel. TTP is 

the time required for the CTC to reach its maximum, which 

approximates the time needed for the bolus to arrive at the voxel 

with delay caused by brain vessel narrowing or obstruction. 

Tmax is the time point where the contrast residue function 

reaches its maximum, which approximates the true time needed 

for the bolus to arrive at the voxel. 

We proposed and compared two ways to generate the 

imaging features for TSS classification. The first way was to 

generate imaging features from the MR images and the 

perfusion parameter maps, in which descriptive statistical 

features (e.g., mean) were defined. The second way was to 

generate imaging features directly from the 4-D PWIs. We 

proposed to use a deep autoencoder to learn hidden 

representation of every CTC within the PWIs. After 

transforming the CTCs into a number of hidden features using 

the trained autoencoders, we then aggregated these hidden 

representations into new feature maps that indicated hidden 

characteristics of the stroke tissue. The descriptive statistical 

features could then be generated from these new feature maps 

for TSS classification. 

The imaging feature generation involved three parts: (1) 

region of interest generation, (2) baseline imaging feature 

generation, and (3) deep imaging feature generation. 

1) Region of Interest Generation 

Generating imaging features based on entire brain MR 

images may be less descriptive to the stroke pathophysiology 

and less predictive of TSS because often stroke occurs in only 

one cerebral hemisphere. Therefore, we first needed to define 

the regions of interest (ROIs) to generate the imaging features. 

Specifically, the ROIs were defined by Tmax>6s, which 

captures both the dead tissue core and the salvageable tissue that 

can possibly be saved by intervention aimed at restoring blood 

flow [37]. The largest connected region in which Tmax>6s on 

the stroke hemisphere was used as the ROI mask. 

2) Baseline Imaging Feature Generation 

The imaging features are summarized in Table II. The 

baseline imaging features were generated from the MR images 

(DWI, ADC, and FLAIR), the perfusion parameter maps (CBV, 

CBF, MTT, and TTP), and the Tmax>6s ROI mask. There are 

two major types of imaging features: descriptive statistics and 

the morphological features. Descriptive statistics included the 

maximum, minimum, median, mean, standard deviation, and 

variance of the intensity/parameter value within the ROI. 

Relative value (i.e., the ratio between the value of interest and 

the corresponding value on the contralateral side of the brain) 

has been shown to be predictive in stroke tissue outcome 

prediction [38], and therefore relative statistics (e.g., relative 

maximum) were also included as part of the descriptive 

statistics. Relative statistics of ADC-to-FLAIR and DWI-to-

FLAIR were included, as inspired by the DWI-FLAIR 

mismatch method. This resulted in a set of 96 baseline 

descriptive features. Morphological features [34] were 

calculated using the ROI mask, including area, volume, 

circularity, and sphericity. Two shape features [39] were 

included: the ratio between the volume of the ROI and its 

bounding box (BE), and the ratio between the lesion surface 

area and the lesion volume (SV). The maximum and minimum 

diameter of the ROI mask were also included. This resulted in 

a set of 8 baseline morphological features. In total, a set of 104 

baseline imaging features were generated. All the features were 

standardized independently to zero mean with a standard 

deviation of 1 for TSS classification.  

3) Deep Imaging Features Generation  

We hypothesized that a deep learning approach can 

automatically learn feature detectors to extract latent features 

from PWIs that can improve TSS classification. We 

implemented a deep autoencoder (deep AE) that is based on a 

stacked autoencoder [27] to learn the hidden features from 

PWIs (Fig. 3). Each PWI voxel CTC at location i, with a size of 

1 x t (t = time for perfusion imaging), is transformed by the deep 

AE into K new feature representations that can represent 

complex voxel perfusion characteristics (in this work, the 

optimal value of K for AE reconstruction is determined by 

cross-validation). The learning of these features is automatic, 

and it is achieved by the hierarchical feature detectors, which 

are sets of weights that are learned in training via 

backpropagation. The deep AE consists of an encoder and a 

decoder. The encoder consists of two components: 1) an input 

layer; and 2) fully-connected layers, in which input neurons are 

TABLE II 
IMAGING FEATURES TYPES FOR TSS CLASSIFICATION 

Type Features Sources 

Descriptive Statistics 

(n=96 for baseline features) 

(n=384 for deep features) 

(Relative†) maximum, (relative) minimum, (relative) median, (relative) 

mean, (relative) standard deviation, (relative) variance  

DWI, ADC, FLAIR, 

CBV, CBF, MTT, TTP, 

deep feature maps 

Morphological Features  

(n=8 for baseline features) 

Area, volume, circularity, sphericity, the ratio between the volume of the 

ROI and the bounding box, the ratio between the lesion surface area and 

the lesion volume, maximum diameter, minimum diameter 

Tmax > 6s ROI mask 

†Relative = the ratio between the value of interest and the value in its contralateral side of the brain 



fully-connected to each previous layer’s output neuron. The 

encoder is connected to the decoder, which follows reversely 

the same layer patterns of the encoder. The encoder output (i.e., 

the middle layer output of the deep AE) is the set of K new 

feature representations. Each new feature representation of all 

CTCs is aggregated to form a new feature map, known as “AE 

feature map” (𝐹𝑘): 

 𝐹𝑘 = {𝑎𝑒𝑖
𝑘}, ∀𝑖 ∈ 𝐼  () 

where I is the set of pixels in a PWI. In total, there are K new 

AE feature maps for a PWIs. New AE deep imaging features 

(descriptive statistics) were then generated from the AE 

features maps following the same procedure as described in 2) 

Baseline Imaging Feature Generation.  

The proposed deep AE is trained via an unsupervised 

learning procedure in which the decoder output is the 

reconstruction of the encoder input. The network is optimized 

to obtain weights, Θ, that minimize the binary cross-entropy 

loss between the input, I, and the reconstructed output, 𝐼(Θ), 
across the samples with size n [40]: 

 argmin
𝛩

1

𝑛
∑[(𝐼𝑖 ∗ log⁡(𝐼(Θ)) + (1 − 𝐼𝑖) ∗ 𝑙𝑜𝑔(1

𝑛

𝑖=1

− 𝐼(Θ))] 

(2) 

4) Training Input Patch Coupling and Generation 

Previous work [36], [41], suggests that regional information 

corresponding to a voxel’s surroundings improves 

classification in the MR images. Therefore, a small region (8 

neighboring voxels) was included with each training voxel, 

leading to a size of 3 x 3 x t (width x height x time; the z-

dimension is omitted; t = 64 in our dataset), where the center of 

the patch is the voxel of interest for the deep AE feature 

learning. Previous work showed that patch coupling in voxel-

wise stroke classification could improve the learning of hidden 

features, yielding better performance [42]. Therefore, we 

proposed three approaches for patch coupling: (1) training 

patch with global AIF patch; (2) training patch with its 

corresponding contralateral patch, which could be used as a 

matched control (reference) to improve feature learning [43]; 

(3) training patch with both the AIF patch and the contralateral 

patch. Each training patch (with the coupled patch(es)) was then 

unrolled from a size of 3 x 3 x t x p (p = 2 or p = 3, depending 

on the number of coupled patches) into a 1-D vector. The 1-D 

data were used to train the deep AEs, which consisted of the 

fully-connected layers. Three different deep AEs were 

optimized for the three patch coupling methods. In total, 

105,000 training data were generated by sampling randomly 

and equally from all the patient PWIs to train the deep AEs. 

B. Machine Learning Models for TSS Classification 

We constructed and compared the performance of five 

machine learning methods for binary TSS classification 

(TSS<4.5hrs or TSS≥4.5hrs): logistic regression (LR), random 

forest (RF), gradient boosted regression tree (GBRT), support 

vector machine (SVM), and stepwise multilinear regression 

(SMR). Briefly, LR is a probabilistic classification model in 

which binary label probabilities are found by fitting a logistic 

function of feature values [44]. RF is an ensemble learning 

method in which a multitude of decision trees are randomly 

constructed and the classification is based on the mode of the 

classes output by individual trees [45]. GBRT is an ensemble 

learning method similar to RF, in which a multitude of decision 

trees are randomly generated, yet these trees are added to the 

model in a stage-wise fashion based on their contribution to the 

objective function optimization [46]. SVM is a supervised 

learning classification algorithm that constructs a hyperplane 

(or set of hyperplanes) in a higher dimensional space for 

classification [47]. SMR is a stepwise method for adding and 

removing features from a multilinear model based on their 

statistical significance (e.g., F-statistics) to improve model 

performance [48]. In addition to the five machine learning 

models, we also trained four popular end-to-end convolutional 

neural networks (CNNs) to classify TSS. The input to the CNNs 

were the stacked images (the MR images + the perfusion 

parameter maps) and the output was the TSS classification. The 

details of the CNN implementation are described in the 

supplementary materials (S.1). 

 

 

Apply ROI mask 

and generate 

deep features

+
Matrix 

unroll

  

  

Encoder Decoder

Deep autoencoder (AE)

AE feature 

maps

Aggregation

AIF

 patch

3 x 3 x 64

64s

A training patch

3 x 3 x 64

Voxel of interest

64s   

WH Contralateral

 patch

3 x 3 x 64

64s

Patch coupling  

Fig. 3. Deep AE feature generation. Training patches (with a size of 3 x 3 x 64) were randomly generated from PWIs. Each patch was coupled with an extra patch 

(AIF only, contralateral only, or AIF+contralateral) and the combined matrix was unrolled into a 1D vector that would be fed into the deep network. The proposed 
deep AE consisted of an encoder and decoder, in which the encoder output would be the new compact representation for the input. The encoder outputs of all PWI 

voxels were aggregated into the final deep AE feature maps. A ROI mask (Tmax>6s) was then applied to the new feature maps to generate the imaging features 

(descriptive statistics). Note that the input z-dimension is not included. 

 



C. Experimental Setup 

1) Autoencoder configurations and implementations details 

We optimized the deep AE using Adam, which computes 

adaptive learning rates during training and has demonstrated 

superior performance over other optimization methods [49]. An 

early-stopping strategy was applied to improve the learning of 

deep AE weights and prevent overfitting, where the training 

would be terminated if the performance did not improve over 

five consecutive epochs (maximum number of training epochs: 

50). The deep AE was implemented in Torch7 [40], and the 

training was done on two NVIDIA Titan X GPUs and an 

NVIDIA Tesla K40 GPU. Ten-fold patient-based cross-

validation was performed to determine the optimal deep AE 

architectures, including the number of encoder hidden layers 

(from 1-3) and the number of hidden units (factor of 4, 8, 16, 

32).  

2) Machine Learning Model Training  

The LR, RF, and SVM were developed using the Python 

Scikit-learn library [50]. The SMR and GBRT were developed 

using  MATLAB and the XGBoost library [51] respectively. 

Different model hyperparameters (e.g., a LR’s hyperparameter, 

C) contribute differently to the classification and different 

machine learning methods may not perform equally on the same 

feature set. Evaluating model performance without 

hyperparameter tuning may lead to decreased predictive power 

due to over-fitting, especially on small and imbalanced datasets. 

Therefore, we performed nested ten-fold cross-validation for all 

five classifier evaluation to avoid classification bias [52]. 

Briefly, an outer ten-fold cross-validation was performed to 

obtain the overall classifier performance. Within each outer fold 

(in which a validation fold was held out), an inner ten-fold 

cross-validation was performed first to determine the optimal 

model hyperparameters using the training data (i.e., the nine 

folds), and then the model was trained with the optimal 

hyperparameters and applied to the validation fold. The details 

of the optimal model hyperparameter determination are 

described in the supplementary materials (S.2). 

D. Evaluation 

1) ROI Sensitivity Analysis 

To investigate the effect of ROI generation on classification, 

we explored the impact of two additional Tmax cutoff values 

[37], [53]. One is Tmax>4s, which is a softer cutoff value that 

may include normal brain tissue; one is Tmax>8s, which is a 

stricter cutoff value that captures only the severe hypoperfused 

stroke region. We followed the same experimental procedures 

to extract the imaging features from the ROIs generated by the 

two new cutoff values and evaluated their performance.  

2) Feature Correlation Analysis 

A question one may ask is the correlation of the new deep 

features to the baseline imaging features. Recently, deep 

learning has been criticized as a “black-box” approach [54] that 

yields state-of-the-art performance, yet the classification 

mechanism is unclear. To understand what the deep features 

represented, we proposed an approach based on the correlation 

analysis. First, we calculated the correlation between the deep 

AE features and the baseline imaging features. Then, for each 

baseline imaging feature, the most correlated deep AE feature 

was identified. For each identified deep AE feature, the top five 

correlated baseline imaging features were obtained. All 

correlations were calculated using Pearson correlation [55].  

3) TSS Subgroup Classification Analysis 

The dataset was created from the patient imaging exams 

obtained from 2011 to 2017. Changes in MR image acquisition 

parameters (e.g., field strength) across any years may impact 

the classifier performance [56]. We explored the impact of two 

image-related variations, magnetic field strength and year of 

imaging acquisition, on the TSS classification. For the field 

strength, we performed two-fold cross-validation to evaluate 

the classifiers on TSS classification, i.e., trained on a data 

subset with one field strength (e.g., 1.5T) and evaluated on a 

data subset with another field strength (e.g., 3T). For the year 

of imaging, we trained the classifiers with the data collected 

from 2011-2014 and evaluated the models with the data 

collected from 2015-2017. This evaluation was meant to 

explore whether the model still performed well on the newer 

data when training on the older data. 

4) Metrics 

We computed the area under the ROC curve (AUC), which 

is a classifier’s probability of predicting an outcome better than 

chance, for all five classifiers. To determine if the performance 

of the models significantly differed, we used the Hanley and 

McNeil significant test [57] with the improved covariance 

calculation [58] to compare the model AUCs. We also 

computed the model AUCs using the method published by Ho, 

et al. in 2017 [26] trained with our dataset. Sensitivity, 

specificity, F1-score, positive predictive value (PPV), and 

negative predictive value (NPV) were calculated for the DWI-

FLAIR mismatch method. Given the DWI-FLAIR mismatch 

method specificity, the performance (sensitivity, F1-score, 

PPV, and NPV) was calculated for the machine learning 

classifiers and compared against the DWI-FLAIR mismatch 

method.  

IV. RESULTS 

A. TSS Classification 

The optimal AE model architectures (number of layers, 

number of hidden units) for three types of coupling patch were 

determined (Table III). All three optimal AE architectures had 

32 hidden units (AE1 to AE32) in the middle layer (i.e., 32 deep 

feature maps), with mean square error (MSE) of at least 40% 

smaller than the average MSE of all of the trained AEs. These 

optimal AE models were used to generate deep feature maps 

from the patient PWIs, in which the ROI masks were applied to 

TABLE III 
OPTIMAL AE ARCHITECTURE FOR EACH COUPLING TYPE  

Coupling Patch Type 
Optimal AE Architecture 

(# of hidden units/layer) 

Optimal MSE (Average 

Deep AE MSE) 

AIF patch only 1152-192-32-32-192-1152 0.606 (1.54) 

Contralateral patch only 1152-288-32-32-288-1152 1.16 (1.95) 

AIF + Contralateral 

patch 
1728-288-32-32-288-1728 1.06 (4.49) 

 



generate the deep AE features. The classifiers were trained with 

three different groups of features: (1) the baseline imaging (BI) 

features (96 descriptive statistics and 8 morphological features); 

(2) the deep AE features (384 descriptive statistics); (3) the 

baseline and deep AE features. The AUCs of the classifiers are 

depicted in Table IV.  

 With the baseline imaging features alone, all classifiers (LR, 

RF, GBRT, SVM, and SMR) achieved an AUC of at least 0.6 

on TSS classification. With the deep AE features alone, most 

classifiers also achieved an AUC of at least 0.6, showing that 

the proposed deep AEs extracted hidden features in PWIs which 

are predictive of TSS. With the combination of baseline 

imaging features and deep features, all classifiers (except the 

GBRT trained with AIF coupling patch) showed improvement 

in AUC (compared to when using only the baseline imaging 

features). Among all the patch coupling methods, deep features 

generated from the AIF + contralateral coupling method 

improved TSS classification in most of all classifiers, e.g., LR 

has the best AUC with the AIF + contralateral patches (0.765 

vs. 0.658 vs. 0.676). Both LR and SVM had significantly better 

AUCs (p-value=0.003 and p-value=0.024 respectively) with the 

features from the AIF + contralateral coupling than with the 

features from only the baseline imaging. Comparing to the 

method published by Ho et al. in 2017, all classifiers (AIF + 

contralateral patches) performed better using the current 

method. 

Figure 4 shows the ROCs of the classifiers trained with the 

baseline features and the deep features (generated from the deep 

AE with the AIF + contralateral coupling patch), and the 

neuroradiologist performance using the DWI-FLAIR mismatch 

method. Three classifiers (LR, SMR, and SVM) achieved 

higher sensitivity (while having the same specificity) than the 

DWI-FLAIR mismatch method with the addition of the deep 

features, demonstrating the ability of using imaging features 

with machine learning models to classify TSS. Among all the 

classifiers, the LR trained with baseline imaging features and 

the deep features performed the best, with an AUC of 0.765. 

Comparing to the mismatch method, LR achieved higher 

sensitivity (0.788 vs 0.694), F1-score (0.788 vs 0.728), NPV 

TABLE IV 
THE AUCS OF CLASSIFIERS ON TSS CLASSIFICATION 

BOLD INDICATED THE HIGHEST AUC FOR A GIVEN CLASSIFIER 

*ASTERISK INDICATED SATISTICALLY SIGNIFICANT RESULT (P-VALUE<0.05) AGAINST MODEL WITH BI FEATURES ONLY 

Classifier 
Ho, et al. 

(2017) [26] 

No AE  AIF coupling patch only 
Contralateral coupling 

patch only 
AIF + contralateral patch 

BI†  AE¥   BI+AE Ω AE BI+AE AE BI+AE 

LR 0.574 0.618 0.650 0.658 0.647 0.676 0.710 0.765* 

RF 0.624 0.640 0.650 0.669 0.662 0.682 0.592 0.690 

GBRT 0.567 0.608 0.590 0.570 0.676 0.674 0.612 0.670 

SVM 0.669 0.636 0.477 0.736 0.605 0.666 0.600 0.746* 

SMR 0.683 0.661 0.574 0.707 0.650 0.677 0.705 0.730 

†BI = Models were trained with the baseline imaging features (94 descriptive statistics and 8 morphological features) 
¥AE = Models were trained with the deep AE features (384 descriptive statistics generated from deep AE feature maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 

  

Fig. 4. The ROCs of different classifiers trained with both the baseline imaging 

features and the deep features (generated from the deep AE with the AIF + 
contralateral coupling patch). The red cross indicated the neuroradiologist 

classification using the DWI-FLAIR mismatch method.  
 

Fig. 5. Examples of TSS classification of the optimal LR classifier trained with 

both the baseline and deep AE features. Patient #1 (deep white matter infarct) 
and patient #2 (cortical infarct) were correctly classified as having TSS<4.5hrs 

and showed clear mismatch between DWI and FLAIR. In patient #3, the 

mismatch between DWI and FLAIR was less obvious, but the classifier still 
classified correctly. Patient #4 was misclassified because there was a visible 

mismatch between DWI and FLAIR images, but clinical history determined 

TSS to be > 4.5hrs. In patient #5, the infarct was more conspicuous on DWI 

but essentially matched on FLAIR, and was also misclassified.  

 

 



(0.609 vs 0.519), and PPV (0.788 vs 0.766) while maintaining 

same specificity (0.609). Therefore, LR with the baseline 

imaging features and the deep AE features was determined to 

be the most suitable classifier for the TSS classification. 

B. Example of Classification 

Figure 5 shows the TSS classification example of the optimal 

LR classifier, trained with both the baseline and deep AE 

features (generated from the AIF + contralateral coupling 

patch). The classifier was able to classify patients with clear 

mismatch between DWI and FLAIR (Figure 5, patient #1 and 

patient #2). In cases where the mismatch was not clear, the 

classifier was able to correctly classify some cases (patient #3), 

but occasionally resulted in misclassifications (patient #4 and 

patient #5).   

C. ROI Sensitivity Analysis 

We performed the ROI sensitivity analysis on the deep AE 

feature maps generated from the AIF + contralateral coupling 

patch. Table V shows the TSS classification results. We 

observed that the deep AE features were still able to improve 

the performance of almost every classifier and threshold 

combination. The only exception was SMR with Tmax>8s, but 

the difference was not statistically significant (p-value=0.089). 

These results show that the deep AE feature generation is robust 

across ROI generation thresholds. Among all the cutoff values, 

Tmax>6s provided ROIs that resulted in optimal performance 

in all classifiers with baseline and deep AE features.  

D. Feature Correlation Analysis 

Table VI shows several examples of the deep AE feature 

correlation to the baseline imaging features.  It is interesting to 

observe that different deep AE features correlated well with 

certain categories of baseline imaging features. For example, 

the AE8 feature correlated well with the time-related baseline 

imaging features (TTP and MTT), whereas the AE7 feature 

correlated well with the morphological baseline imaging 

features (e.g., area). Some deep AE feature (e.g., AE16) 

correlated well to an image type (e.g., ADC). The correlation 

analysis demonstrates that the deep AE features capture a 

variety of complex representations (i.e., shape, morphology) 

that led to better TSS classification.  

E. TSS Subgroup Classification Analysis 

The TSS subgroup classification result is shown in Table VII. 

Three out of five classifiers showed improvement with the 

addition of deep AE features on the field strength subgroup 

analysis, and four out of five classifiers showed improvements 

on the year of imaging subgroup analysis. We observed that the 

SMR (with the baseline imaging features and the deep AE 

features) did not perform well (AUC=0.488) in the year of 

imaging subgroup analysis. We suspect that this may be due to 

the nature of the SMR feature selection mechanism, where 

small feature set could be selected and led to poor performance. 

Overall, we could still observe the improvement of the TSS 

classification with the additional new imaging features. The 

subgroup analysis shows that the classifiers were robust to both 

field strength and year of image acquisition. 

V. DISCUSSION  

Determining stroke onset time independent of patient history 

is a challenging and important task for better stroke evaluation 

and stroke treatment decision-making. The DWI-FLAIR 

mismatch method is the current state-of-the-art method that can 

provide clinicians with insight into stroke onset time based on 

observable mismatch patterns between DWI and FLAIR. One 

 TABLE VI 
FEATURE CORRELATION BETWEEN THE DEEP AE FEATURES AND 

THE BASELINE IMAGING FEATURES 

Rank 

AE8 

relative 

minimum 

AE7 Relative 

max 

AE16 

variance 

AE23 
Relative 
variance 

1 

TTP 

relative 
minimum 

Area 
ADC 

variance 

DWI 
relative 

maximum 

2 
TTP 

minimum 
Maximum 
diameter 

ACD-

FLAIR 
relative 

mean 

DWI 
variance 

3 

MTT 

relative 
minimum 

Volume 

ADC-
FLAIR 

relative 

variance 

FLAIR 

relative 
maximum 

4 
TTP 

maximum 

Minimum 

diameter 

MTT 

variance 

DWI-

FLAIR 

relative 
variance 

5 
DWI 

minimum 
TTP minimum 

ADC 

mean 
SV 

Interpre- 

tation 

Time-

related 

Morphology-

related 

ADC-

related 

DWI-

related 

 

TABLE V 
THE AUCS OF CLASSIFIERS (WITH AIF + CONTRALATERAL 

PATCH) ON TSS CLASSIFICATION IN ROI SENSITIVITY ANALYSIS 

*ASTERISK INDICATES STAISTICALLY SIGNIFICANT RESULT (p-
VALUE<0.05) AGAINST MODEL WITH BI FEATURES ONLY 

Classifier 
Tmax>4s Tmax>6s¥ Tmax>8s 

BI†   BI+AEΩ BI BI+AE BI BI+AE 

LR 0.520 0.690* 0.618 0.765* 0.622 0.651 

RF 0.667 0.678 0.640 0.690 0.610 0.666 

GBRT 0.607 0.650 0.608 0.670 0.618 0.644 

SVM 0.479 0.649* 0.636 0.746* 0.624 0.683 

SMR 0.494 0.591 0.661 0.730 0.696 0.624 

†BI = Models were trained with the baseline imaging features (94 descriptive 
statistics and 8 morphological features) 
ΩBI + AE = Models were trained with the baseline and deep AE features 
¥The result is obtained from Table IV 

TABLE VII 

THE AUCS OF CLASSIFIERS ON TSS CLASSIFICATION IN 

SUBGROUP ANALYSIS 
BOLD INDICATED HIGHER AUC OF MODEL WITH BI+AE 

FEATURES AGAINST MODEL WITH BI FEATURES ONLY 

Classifier 
Field Strength Year of Imaging 

BI† AE¥ BI+AEΩ BI AE BI+AE 

LR 0.637 0.673 0.751 0.554 0.660 0.648 

RF 0.620 0.610 0.606 0.664 0.713 0.740 

GBRT 0.603 0.631 0.624 0.692 0.664 0.700 

SVM 0.605 0.496 0.728 0.577 0.596 0.673 

SMR 0.625 0.608 0.603 0.538 0.787 0.488 

†BI = Models were trained with the baseline imaging features (94 descriptive 

statistics and 8 morphological features) 
¥AE = Models were trained with the deep AE features (384 descriptive 
statistics generated from the deep AE feature maps) 
ΩBI + AE = Models were trained with the baseline and deep AE features 



study reported the DWI-FLAIR mismatch method could 

achieve an AUC of 0.58 in a data set of 194 ischemic stroke 

patients [8]. A clinical trial showed that using this method is 

safe (i.e., no increased risk of hemorrhage) in selecting patients 

whose stroke onset time is unknown for IV tPA treatment [11]. 

Yet, this method suffers from its simplicity, i.e., the mismatch 

pattern between DWI and FLAIR may not capture all patients 

in whom TSS<4.5hrs [14], which can lead to a 

misclassification.  In this work, we proposed a classification 

framework (defining ROIs, generating features, and training 

classifiers) for TSS classification. To generate useful 

information with a limited number of patients (n=131) and high 

dimensional data (4-D PWIs), we proposed to first use an 

autoencoder with several patch-coupling strategies to learn 

voxel-wise hidden representations. We then aggregated these 

hidden representations to generate new feature maps, which can 

be used to generate new AE features. Using this approach, we 

developed new imaging features from routinely acquired MR 

imaging sequences, perfusion parameter maps, and deep AE 

feature maps that capture information predictive of TSS. Our 

results show that this machine learning approach can potentially 

serve as an improved alternative to the DWI-FLAIR mismatch 

method. The proposed methodology may also be applied to 

other medical imaging data (e.g., cardiac PWIs). 

With only the baseline imaging features, the best classifier 

(SMR) can achieve an AUC of 0.661 on TSS classification 

(Table IV). This indicates that the machine learning models 

capture signal changes from the MR images and the perfusion 

parameter maps that are predictive of TSS. One possible signal 

is the change of the perfusion parameter value (e.g., CBV) over 

time within the ischemic stroke regions, previously 

demonstrated in animal studies [24], [25]. This also shows that 

the enriched baseline imaging feature set improves the TSS 

classification, in which previous work [26] showed a limited 

performance (AUC<0.700) with a single mean intensity value 

feature. There is an interesting observation that the deep AE 

feature maps generated from the AIF + contralateral coupling 

input are more predictive than the deep AE feature maps 

generated from the AIF coupling input or the contralateral 

coupling input. This supports our hypothesis that the AIF patch 

provides the base for the initial bolus setting (e.g., how fast the 

bolus is injected) whereas the contralateral patch provides a 

matched control for the healthy brain concentration time curve. 

We also observe that adding the deep imaging features (from 

the AIF + contralateral coupling) could improve the best 

classifier (LR) by at least an AUC of 0.1, and the correlation 

shows that 4 out of 10 top-10 correlated are the deep AE 

features (supplementary material Table SII). These 

observations suggest that the deep AE features are important for 

improving the TSS classification. Compared to the best 

proposed model, the best end-to-end CNN had a lower AUC 

(0.575 vs. 0.765, p-value = 0.0001; supplementary material 

Table SI). We suspect that the low performance may be due to 

the limited training data, a common problem with medical 

datasets, and a large number of trainable weights (>100,000). 

Deep learning approaches have been criticized as “black-

box”, in which the learning and the classification mechanism 

are too complicated and difficult to understand, engendering 

doubt in medical applicability because clinical decision making 

is ideally evidence-based [59]. In this work, we interpreted the 

complex deep AE features via a correlation analysis and found 

that some deep AE features correlated well with some baseline 

intuitive imaging features (e.g., morphology and time). This is 

an important first step because it shows clinicians what these 

deep AE features may represent, helping them to understand 

more about how the classifiers make the classification and why 

they can achieve better performance. The next important step 

will be the visualization [26], which may bring further insight 

into TSS classification, like highlighting the important brain 

regions that drive a specific classification. Through a 

comprehensive visualization tool, clinicians may then be able 

to associate clinical reasoning (e.g., the location and the 

strength of the highlighted signals) with the TSS classification, 

making the deep learning approach more intuitive and therefore 

integral to the medical decision-making process.  

Our study does have some limitations. The machine learning 

models were trained and validated on only the MR images. Our 

next step will be collecting the Computed Tomographic (CT) 

perfusion images and validating the robustness of our model on 

the new imaging modality. CT perfusion imaging is cheaper, 

faster and more readily available than MRI and could become 

the imaging modality of choice for acute ischemic stroke 

patients if TSS analysis on CT images was accurate and 

independent of clinical history. Finally, we did not consider 

clinical variables (e.g., age) in our classification, which may 

further improve the TSS classification. We plan to explore the 

existing machine learning models, incorporating clinical 

variables for TSS classification in the future. 

VI. CONCLUSION 

In this work, we developed new imaging features from MR 

images, perfusion parameter maps, and deep AE feature maps, 

and showed that they can be utilized by machine learning 

models to classify TSS. We showed that the best machine 

learning model can outperform the current state-of-the-art 

DWI-FLAIR mismatch method. We also proposed a correlation 

method to interpret the deep AE features and demonstrated that 

our proposed classification method is robust to variations in 

imaging acquisition. The method proposed here provides a 

foundation to utilize deep learning and machine learning 

techniques in TSS classification, which could ultimately 

provide decision-making guidance for clinicians in acute stroke 

intervention treatment. 
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