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Abstract

Prostate biopsy is commonly used to detect and stage prostate cancer. However,
accurate biopsy targeting requires the prior identification of appropriate targets for
sampling. Imaging-based decision support systems have significant potential to
improve targeting by predicting which potential biopsy locations are most likely to
have cancer, and which can safely be left unsampled. In this study, we developed
an algorithm to predict whether a given biopsy would find clinically significant
prostate cancer using MRI data alone. Using a dataset of 11,095 biopsies collected
from 711 patients, we developed a support vector machine for predicting the
presence of clinically significant prostate cancer with a test set AUC of 0.72,
precision of 0.877, and recall of 0.74.

1 Introduction

Prostate cancer is the most common newly diagnosed cancer and second most deadly cancer of
American men (2). Transrectal ultrasound-guided (TRUS) MR fusion biopsy is a diagnostic procedure
for prostate cancer in which potential targets for sampling are identified by radiologists on multipara-
metric MRI (mpMRI) of the prostate, and then ultrasound guidance is used to collect biopsies from
those targets (6). This methodology has been demonstrated to be more sensitive than unguided biopsy.
(3; 1). However, interpretation of prostate mp-MRI is challenging and has substantial inter-reader
variability, suggesting a need for computer-based tools (7). In this work, we aim to develop a model
for predicting whether or not clinically significant prostate cancer is likely to be found in a given
biopsy location based on mpMRI.
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Figure 1: Our dataset consists of biopsy locations with associated Gleason scores and mpMRI studies
with prostate and region of interest contours. A) Example prostate with illustrated biopsy locations.
Biopsies were separated into two groups by Gleason score (GS > 3+3 and GS ≤ 3+3). mpMRI region
of interest is also illustrated for comparison. B) Interpolation was used to create simulated MR planes
perpendicular to the biopsy. C) The four MR data types from an example patient. The ROI referred
to in A is highlighted in a red square; the yellow oval represents the prostate boundary.

2 Methods

2.1 Data acquisition

Data for a total of 759 patients was retrieved from clinical records retrospectively. All 759 patients
underwent TRUS MR fusion biopsy using the Artemis guided biopsy system between 2010 and 2016.
Before the biopsy procedure, each patient underwent multiparametric MR imaging, and a clinical
radiologist identified regions of interest in the image to target for biopsy (ROIs). The patients then
underwent TRUS biopsy, and 8-16 biopsy cores were retrieved from each patient’s prostate using the
sampling device. During sampling, the spatial coordinates of each retrieved core were recorded. Each
core was then evaluated by a pathologist and assigned a primary and secondary Gleason score. For
this study, we considered a biopsy core to contain clinically significant prostate cancer the Gleason
score was greater than 3+3. Four types of imaging studies were retrieved from our Picture Archive
and Communication System (PACS): T2-weighted images, apparent diffusion coefficient (ADC)
maps, Kep maps, and Ktrans maps.

2.2 Preprocessing and Biopsy Modeling

Cores were included in our analysis unless they met at least one of three exclusion criteria: 1) MRI
study was missing or invalid, 2) assigned Gleason grades were missing or invalid, or 3) the biopsy
core was entirely outside of the prostate contour. After exclusion, 675 patients with a total of 9,384
biopsy cores remained. Of these retained cores, 981 (10.5%) were labeled as clinically significant.

Biopsy locations are represented by the Artemis system as a series of 20 points. For each point, we
extracted a square region of MR data perpendicular to the biopsy at that point using 8-way linear
interpolation between MR voxels. For any portions of the biopsy not contained within the prostate,
mean padding was used to replace the excluded portion.

2.3 Feature Extraction and Selection

In order to represent heterogeneity along the length of a core, we initially split each core into two
halves and computed features on each half; these features were then averaged together. We extracted
a variety of features, including Haralick and wavelet textures (9; 8), statistical features (such as mean,
variance, and percentile values) (4), and the histogram of oriented gradients (HOG) (5).
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Figure 2: A) ROC curves plotted for the final eight-fold cross-validation with optimized parameters
(537 patients) B) ROC curve for the test set (138 patients) C) Cross-validation AUC vs the number of
features selected by RFE D) Cross-validation AUC vs the number of principle components selected
using PCA

2.4 Dimension Reduction and Learning

Recursive feature elimination (RFE) and principle component analysis (PCA) were applied to reduce
the dimensionality of the feature space. All features were normalized to zero mean and a unit variance.
A bagging and balanced-weight support vector machine (SVM) with a radial basis function kernel
was trained to classify clinically significant biopsy. A total of 539 patients (79.9%) were randomly
selected to use as the training set while the remaining patients were used as a held-out test set. All
parameters were optimized under eight-fold cross-validation on the training set. ROC curves were
obtained and the area under the ROC curve (AUC) was used as the evaluation metric.

3 Results

As shown in Fig. 2, the mean AUC of the eight-fold cross validation was approximately 0.71 ±
0.02 with precision of 0.86 ± 0.02 and sensitivity of 0.72 ± 0.01, respectively, showing acceptable
performance with small variance. The AUC of the test set is 0.72 with a precision of 0.87 and
sensitivity of 0.74, and the f1-score of testing set is 0.80.

4 Conclusion

In this study, we built a classifier that predicts the existence of clinically significant prostate cancer at
proposed biopsy locations using MR imaging data alone with acceptable performance. Our results
demonstrate the potential for use of MR-based decision support tools in optimizing biopsy targeting
for prostate cancer diagnosis. Substantial opportunities for further improvements exist that we
continue to pursue. This includes the use of additional types of MR data (such as a calculated high
b-value map and raw perfusion data) and the use of other types of models (such a deep learning
models) for both feature extraction and prediction.
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