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Abstract— Recent developments in machine learning algorithms 

have enabled models to exhibit impressive performance in 

healthcare tasks using electronic health record (EHR) data. 

However, the heterogeneous nature and sparsity of EHR data 

remains challenging. In this work, we present a model that 

utilizes heterogeneous data and addresses sparsity by 

representing diagnoses, procedures, and medication codes with 

temporal Hierarchical Clinical Embeddings combined with Topic 

modeling (HCET) on clinical notes. HCET aggregates various 

categories of EHR data and learns inherent structure based on 

hospital visits for an individual patient. We demonstrate the 

potential of the approach in the task of predicting depression at 

various time points prior to a clinical diagnosis. We found that 

HCET outperformed all baseline methods with a highest 

improvement of 0.07 in precision-recall area under the curve 

(PRAUC). Furthermore, applying attention weights across EHR 

data modalities significantly improved the performance as well as 

the model’s interpretability by revealing the relative weight for 

each data modality. Our results demonstrate the model’s ability 

to utilize heterogeneous EHR information to predict depression, 

which may have future implications for screening and early 

detection. 

 
Index Terms—Clinical decision support, deep learning, 

electronic health record, depression, temporal representation and 

reasoning. 

I. INTRODUCTION 

ith the rapid development of deep learning algorithms 

and widespread use of healthcare data sets, many 

models have presented state-of-the-art performance 

using patients’ electronic health records (EHRs) for diagnostic 

tasks [1], disease detection [2], and risk prediction [3]. EHRs 

have been broadly adopted for documenting a patient’s 

medical history [4]. They are composed of data from various 

sources, including diagnoses, procedures, medications, clinical 
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notes, and laboratory results, which contribute to their high 

dimensionality and heterogeneity. Frequently, models built on 

EHR data have limited the number of data categories used [5], 

[6]. Few studies have attempted to use data from a broad set of 

categories as data heterogeneity remains a technical barrier for 

utilizing all types of EHR data in one model. As a 

consequence, there is an ongoing effort to construct a single 

model that is able to aggregate data from different data 

modalities. An additional complication is that EHR data 

includes temporal information from different patient visits, 

with each visit producing data from various sources. 

Depression is one of the leading causes of disability 

worldwide [7]. Many depressed patients seek treatment from 

primary care providers, as 15% of primary care patients screen 

positive for depression, which makes improvement in the 

quality of depression care in primary care settings vital [8]. 

Despite the high prevalence and cost of depression, a previous 

meta-analysis found that the screening process for patients at 

high risk of depression only produced a true positive rate of 

50% [9]. Ensuring that screening targets high-risk individuals 

minimizes the workload for primary care providers, who do 

not have enough time to do all relevant preventive health care 

screening [10]. To address this problem, studies have utilized 

LASSO logistic regression [11], random forests [12], support 

vector machines (SVM) [13] for predicting depression. While 
these methods are able to handle some data modalities, they do 

not model the EHR's heterogeneous structure, thus presenting 

an opportunity for new techniques. 

To construct a predictive model with high accuracy for 

prediction of depression and mitigate the heterogeneity and 

sparsity of EHR data, we propose Hierarchical Clinical 

Embedding with Topic modeling (HCET), which aggregates 

diagnoses, procedure codes, medications, and demographic 

information together with topic modeling of clinical notes. 

Inspired by [5], HCET builds a hierarchical structure on 

different categories of EHR data with various embedding 

levels, while preserving the data’s sequential nature. In this 

way, it learns the inherent interaction between EHR data from 

various sources within each visit and across multiple visits for 

an individual patient. This study points to a potential method 

for targeting depression screening among individuals in a 

single health system who have conditions that are associated 

with high risk for depression. Depression is often not 

evaluated in primary care settings. This approach could help in 

clinical practice by identifying individuals potentially at risk 

for developing depression within a specific time interval who 

should be screened (and potentially treated) for depression. 
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II. RELATED WORK 

   Temporal models based on RNN or LSTM have been 

applied on medical data, particularly for using EHR data to 

predict future diagnoses [1], [14]. [15] added an attention 

mechanism to an RNN to predict heart failure, which 

improved the model’s interpretability for predicting the time 

of an event. Bai et. al also focused on improving their model’s 

interpretability using self-attention, but only applied it on 

diagnosis and procedure codes [16]. [5] focused on learning 

the inner structure of an EHR by constructing a multiple level 

embedding with a bottom up hierarchy of diagnosis level, visit 

level, and patient level. However, these models did not apply 

on wide range of EHR data sources. [17] was able to predict 

clinical interventions from a deep neural network using lab 

results and demographics, but with a smaller feature 

dimension of 34 in total. Thus, this method did not resolve the 

data heterogeneity and sparsity issues for EHR data. 

   Several previous studies have focused on semantic 

representation of clinical notes. Gligorijevic et. al proposed a 

model with attention to process clinical text with several hand 

crafted features for chronic disease prediction [18]. [11] was 

able to include diagnosis codes, demographic information, and 

clinical notes for predicting a future diagnosis of depression. 

However, their approach processed unstructured clinical text 

using a medical ontology for medical term extraction. In 
addition,  it ignored temporal information by building a 

logistic regression classifier, which is a non-temporal model. 

[6] first applied topic modeling to parse clinical notes and 

combined it with other data modalities to input into an 

autoencoder as a feature extractor, while building a random 

forest classifier for future disease prediction. This method is a 

two-stage model, which incurs additional complexity to 

optimize compared to one end-to-end model. Our model aims 

to achieve better semantic representation of clinical notes and 

aggregates them with other EHR data to improve predicting 

diagnosis of depression. In addition, hierarchical embedding 

was built to reveal latent connection between various EHR 

data source to resolve data heterogeneity and sparsity issues. 

III. DATA DESCRIPTION 

To capture a spectrum of clinical complexity for our 

analyses, we selected patients based on three primary 

diagnoses: myocardial infarction (MI), breast cancer, and liver 

cirrhosis.  Generally, MI represents the least complexity, with 

acute onset, resolution, and straight-forward treatment. Breast 

cancer is increasingly complicated in terms of diagnoses and 

treatment options. Finally, a patient with liver cirrhosis may          

have many sequelae, generating a complex EHR 

representation. Patients for this project were identified from 

our EHR in accordance with an IRB (#14-000204) approved 

protocol. Each patient visit had EHR data types consisting of 

diagnosis codes in International Classification of Disease, 

ninth revision (ICD-9) format, procedure codes in Current 

Procedural Terminology (CPT) format, medication lists, 

demographic information, and clinical notes. All patient 

records coded with ICD-9 values for MI, breast cancer, or 

liver cirrhosis from 2006-2013 were included. In this data set, 

demographics were limited to the patient’s gender and age at 

the time of each visit. Initially, there were 45,208 patients and 

after the preprocessing and patient including criteria in section 

III. D, 10,148 patients were included in the analysis. Table I 

shows statistics of the dataset. Note that there some patients 

have more than one primary diagnosis.  

A. Identifying Diagnosis of Depression 

   Because patients in this dataset were identified 

retrospectively and were not suspected for depression, 

common methods for identifying and assessing severity of 

depression such as Patient Health Questionnaire (PHQ-9) 

scores [19] were not available. Instead, depression onset was 

identified by three methods: 

• depression related ICD-9 code [11] 

• inclusion of an antidepressant drug in a patient’s 

medication list  

• appearance of an antidepressant drug in clinical notes 

(from https://www.whocc.no/atc_ddd_index/?code=N06A) 

   The earliest time stamp of an occurrence of any of these 

events was defined as the time of diagnosis with depression. In 

total, 3,047 patients out of the total 10,148 were identified as 

depressed.  The diagnosis time of depressed for each patient 

occurred after the primary diagnosis. 

IV. METHODS 

   ICD-9 codes, CPT codes, medication lists, and patient’s 

gender can all be considered as categorical variables while 

ages are numerical. Therefore, an intuitive approach is to 

encode these features in a multi-hot vector, where each row 

corresponds to a specific code or data element. Each row has a 

binary value, where 1 indicates have this item and 0 for not 

during one visit. ICD-9 codes are up to five digits long with 

three digits before a decimal point and two digits after, 

resulting in 9,285 unique code in our data set. In order to 

reduce the dimensionality of the feature vector, ICD-9 codes 

were grouped by the three numbers before the decimal point, 
as was previously done in [14]. Detailed descriptions of 

dimensionality reduction techniques for ICD-9, CPT, and 

medication lists are presented in section IV.C, definition of 

HCET.   

   Embedding is a technique that has been widely adopted in 

NLP to project long and sparse feature vectors into a dense 

lower dimensional space [20]. This approach efficiently 

reduces the size of a model’s parameters as well as decreases 

training time. Recent models [5], [14], [21] have utilized 

embedding to process categorical data in EHRs, which we 

have adopted in the current model. The full definition is 

shown in section IV.C. 

A.  Topic Modeling of Clinical Notes 

    Latent Dirichlet allocation (LDA) is an unsupervised 

learning method to encode text by assigning words to 

underlying topics (semantic themes). Briefly, a topic is 

TABLE I 

STATISTICS OF EHR DATASET 

# of patients with MI 2,943 (1,280 depressed) 

# of patients with breast cancer 5,568 (1,960 depressed) 

# of patients with liver cirrhosis 2,218 (772 depressed) 

Gender Male (27.46%), Female(72.54%) 

Age 68.78 ± 15.46, min: 18, max 98 
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represented as a multinomial distribution over the unique 

words in a corpus, and a document is represented as a 

multinomial distribution over all topics. LDA is able to 

generate topics automatically from a corpus, providing 

generalized information. Recent work has applied topic 

modeling on clinical notes [22]–[25]. We chose to model 

clinical notes with 100 topics, each one with five words with 

highest probability to represent the semantic mean of the 

clinical notes, thus generating a 100-feature vector 

representation of the document in semantic topic space. Topic 

vectors was dichotomize using each topic’s average value as a 

threshold among our data. For patients with multiple clinical 

reports in the six-month time window, probabilities were 

averaged first to reach on feature vector and then 

dichotomized using the same method. 

B. Baseline Models 

    Traditional machine learning algorithms generally ignore 

temporal and sequential correlation among features by 

aggregating them over a time window for a patient. As 

mentioned in the first paragraph of section IV, the feature 

vector for each patient is a multi-hot vector which 

concatenated all five EHR data modalities over multiple visits. 

In order to leave out the bias for more frequent codes, each 

row of vector is 1 when this code shows in any of the visits. 

As a compensation factor for temporal information, the 
number of records in ICD-9, CPT, medication lists, and 

clinical notes are added as addition factors to capture the of 

frequency of patients visits of records. 10-fold cross validation 

was adopted for each model. In addition, patients in the test set 

were separated by their primary diagnosis and the results were 

compared for three primary diagnosis individually. 

Lasso Previous work has applied Lasso for predicting 

depression [11], which is compared in the analysis. Lasso uses 

L1 regularization which brings sparsity to select the more 

correlated features for the task. 

SVM  SVM is also compared in the experiment as it been 

utilized to predict depression previously [13]. Here we used 

RBF kernel and five-fold cross validation with grid search to 

fine tune the regularization term.  

MLP Multilayer perceptron (MLP) Two layers of MLP with 

a tanh activation function and 256 nodes is also compared 

here, following the implementation from previous studies [5], 

[15].  

RF Nevertheless, ensemble methods like random forests (RF) 

[26] and gradient boost regression trees (GBRT) [27] have 

produced competitive results in disease detection and outcome 

prediction for healthcare. These models also compute the 

significance factor for each feature, which provides valuable 

information on feature selection as well as dimension 

reduction. Therefore, RF was adopted as a baseline model in 

comparison with HCET. The hyper parameters were chosen 

using grid search with five-fold cross validation on the 

training set. 

VAE+RF [6] proposed pretraining autoencoder as the feature 

extractor for EHR and using RF for classification from the 

extracted features. This method is also compared. 

MiME* The MiME model demonstrated state-of-the-art 

performance in predicting heart failure onset [5]. It consists of 

a temporal model using GRUs that learn the temporal 

character of disease progression with external knowledge of 

linked relation between ICD-9 codes and associated CPT 

codes and medication lists during each visit. The MiME model 

required removal of visits that did not include diagnosis codes 

to make sure diagnosis codes were present to input the model. 

Since there was no direct linked relationship between ICD-9 

codes, CPT codes, and medication lists in our EHR data, these 

three features were processed in the same level instead of the 

two level structure proposed in MiME. In addition, there are 

many cases where procedure codes or medications are present 

in the EHR without associated diagnoses. Therefore, we 

revised the MiME model by removing this layer while keeping 

the remaining structure and parameter values consistent, 

denoted MiME*.  The performance of this modified model 

was compared to our HCET model.  

𝐿𝑎𝑢𝑥 = −𝜆𝑎𝑢𝑥 ∑(∑ 𝐶𝐸 (𝑑𝑖
(𝑡), 𝑑̂𝑖

(𝑡)
) + ∑ 𝐶𝐸 (𝑚𝑖,𝑗

(𝑡), 𝑚̂𝑖,𝑗
(𝑡)

)

|𝑀𝑖
(𝑡)

|

𝑖

|𝜈(𝑡)|

𝑖

𝑇

𝑡

   (1)   

 

As shown above, MiME defined Eq. (1) to compute the 

auxiliary loss, where 𝑑𝑖
(𝑡) denoted the diagnosis code in  𝑡𝑡ℎ 

visit. Thus, calculating auxiliary loss required diagnosis codes 

present in each visit, which and this is not applicable to our 

dataset. On the other hand, we highly focus on the prediction 

accuracy of depression but not on other diseases or symptoms.  

Furthermore,  the average increase after implementing this 

component was less than 0.01 from their reported results, so 

the auxiliary loss defined in MiME was not adopted in this 

study. 

C. Definition of HCET 

   Fig. 1 illustrates the hierarchical structure of HCET. The 

ultimate goal of the model is to predict the probability of a 

chronic disease for patient 𝑖 given the feature embedding 

representing a sequence of visits, ℙ(𝑦𝑖|hi
⃗⃗⃗  ). While the model is 

designed to be generalizable, we focus here on the prediction 

of depression, 𝑦𝑖 . hi
⃗⃗⃗   stands for the patient level embedding of a 

patient’s EHR, and each patient has multiple hospital visits 

from 𝑣1⃗⃗⃗⃗  to 𝑣𝑡⃗⃗  ⃗ , which compose the visit level embedding. 

During one visit 𝑣𝑡⃗⃗  ⃗ , the code level embedding 𝑒𝑡⃗⃗  ⃗ is the 

 
Fig. 1. Illustration of for EHR data. There are three levels of embedding: 

patient level, visit level and code level.  denotes the attention weight for each 

embedding. The full explanation of symbols is described in Table II. The red 

color shows the new components added from MiME.  
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ensemble of multiple ICD-9 and CPT codes, medications, 

demographic information, and topic features extracted from 

associated clinical notes. Since there are five categories of 

EHR  data, we built individual embedding for each first and 

aggregated them together. 

   Table II shows the full list of notation and corresponding 

definitions of symbols used in HCET. 𝑑  is a multi-hot binary 

vector with dimension of ℝ𝐷×1, where each column 

corresponds to whether a specific ICD-9 code was assigned in 

the 𝑡th visit. A similar approach applies to 𝑐  𝜖 ℝ𝐶×1, 

𝑚⃗⃗  𝜖 ℝ𝑀×1, and 𝑝  𝜖 ℝ2×1, which are the vector representations 

for CPT, medication, and demographic information, 

respectively. As described before, topic features are vector 

representations in topic space, which represent the distribution 

of topic occurrences in the document. In order to match the 

embedding size of other data types, a threshold was defined to 

dichotomies each topic word, which was computed by the 

average probability of each topic value across all patients. The 

threshold value for 100 topic words are described in the results 

section. Thus, 𝑥  𝜖 ℝ100×1
 is a multi-hot binary vector 

representation of topic features, where each column denotes 

the unique 100 topics for the 𝑡th visit. 

    Eq. (2), Eq. (3) and Eq. (4) describe mathematical 

formulation of HCET in the top-down view, denoting the 

Patient level, Visit level, and Code level embeddings, 

respectively. 

 

hi
⃗⃗⃗  = 𝑓(𝑣1⃗⃗⃗⃗ …  𝑣𝑡⃗⃗  ⃗ … 𝑣𝑇⃗⃗⃗⃗  )                          (2) 

 

   Eq. (2) shows the method to process temporal information of 

various visit level embeddings to compute a patient level 

embedding, where 𝑓 stands for the function to input visit 

information in a sequential order. As mentioned before, 

RNNs, LSTMs, and GRUs have been widely used to fulfill 

this task. Since RNNs often encounters the vanishing gradient 

problem and better performance has been shown for a GRU 

over an LSTM in previous work [5], we used a GRU in the 

current model. 

 

𝑣𝑡⃗⃗  ⃗ = (𝑊𝑒𝑒𝑡⃗⃗  ⃗)  +  𝑒𝑡⃗⃗  ⃗                         (3) 

 

   In Eq. (3), visit level embedding is generated by first 

performing a matrix transformation with weight 𝑾𝑒   𝜖 ℝ
𝑧×𝑧 , 

followed by a non-linear ReLU transformation function , 

where 𝑧 is the embedding size. We omitted the bias term 𝑏𝑡
⃗⃗  ⃗ 

here to formulate residual connection [28]. 

                   

𝑒𝑡⃗⃗  ⃗ = 𝛽(𝐹) + 𝐹                                  (4)                               

        𝐹 = 𝑊𝐷𝑑 + 𝑊𝐶  𝑐 + 𝑊𝑀  𝑚⃗⃗ + 𝑊𝑃  𝑝 + 𝑊𝑋  𝑥                 (5) 

 

Eqs. (4) and (5) define the code level embedding by 

summing individual embeddings from five EHR data sources 

with a non-linear transformation function 𝛽. As in equation 

(3), we use a ReLu for 𝛽. The 𝑊𝐷  𝜖 ℝ𝑧×𝐷, 𝑊𝐶  𝜖 ℝ
𝑧×𝐶 , 

𝑊𝑀  𝜖 ℝ𝑧×𝑀, 𝑊𝑃  𝜖 ℝ𝑧×𝑃 and 𝑊𝑋  𝜖 ℝ𝑧×𝑋 represent the weight 

matrices for transforming the feature vectors of ICD-9 codes, 

CPT codes, medication lists, demographics, and topic features 

with high and varied dimensionality into a latent space with 

the same lower dimension. For example, the diagnosis vector 

𝑑 𝜖 ℝ𝐷×1, after multiplied with weight matrix, 𝑊𝐷𝑑  results in a 

vector of dimension  ℝ𝑧×1. Therefore all vectors can sum up 

as in Eq. (5).  In the same manner to Eq. (3), all of the 

corresponding biased terms were omitted to denote residual 

connection. Finally, binary cross entropy was used as the loss 

function. 

                           ∑𝜆𝑗 = 1                                           (6)          

𝐹′ = 𝜆𝐷𝑊𝐷𝑑 + 𝜆𝐶𝑊𝐶𝑐 + 𝜆𝑀𝑊𝑀𝑚⃗⃗ + 𝜆𝑃𝑊𝑃𝑝 + 𝜆𝑋𝑊𝑋𝑥    (7)   

 

In order to investigate the importance of each data modality 

in this prediction task as well as improve interpretability of 

HCET, attention weights 𝜆𝑗 were defined for each modality, 

where the sum of all weights equal to one, as shown in Eq. (6). 

A weighted sum code level embedding 𝐹′ was input into 

HCET, indicated by Eq. (7), which substituted F in Eqs. (4) 

and (5). After training, attention weights reveal the importance 

for each feature type in prediction tasks.    

D. Predicting Depression at Different Decision Points 

Previous studies [1], [2], [5], [21] have used the data from 

the entire EHR for future disease prediction. This method 

could add bias for patients with longer medical histories. It 

also gives equal weight to old data that likely is not as useful 

as more recent data. As predicting the future risk of a disease 

in a prospective setting is an ongoing task, the time window of 

a patient's EHR is highly varied. Therefore, as a similar 

approach to [11], we defined four decision points in advance 

of the diagnosis of depression: two weeks, three months, six 

TABLE II 
NOTATION USED IN THE FORMULATION OF HCET 

Notation Definition 

𝐷 Unique set of ICD-9 codes 

𝐶 Unique set of CPT codes 

𝑀 Unique set of medications 

𝑋 Set of 100 topic features 

P Demographic information 

𝜆𝑗   Attention weight for one data modality, j ∈ (D,C,M,X,P) 

𝑒𝑡⃗⃗  ⃗ 𝜖 ℝ
𝑧

 Vector representation of summed EHR data at the 𝑡-th visit 

𝑣𝑡⃗⃗  ⃗ 𝜖 ℝ𝑧
 Vector representation of 𝑡 𝜖[1…𝑇] visit EHR data for a patient 

hi
⃗⃗⃗   𝜖 ℝ𝑧

 
Vector representation of EHR data for patient number 𝑖 

The dimension of embedding 𝑧 is the same for associated vectors due to the 

residual connection used in HCET. 

 
Fig. 2. Illustration of prediction at different time windows in advance of 

diagnosis of depression. The beginning time of EHR is defined by the 

timestamp of the primary diagnosis.  
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months, and one year. Fig.2 illustrates the four six-month time 

windows for using EHR data to predict depression diagnosis. 

For non-depressed patients, the last time step of the EHR was 

substituted for the diagnosis time.  

In order to test the effect of temporal information and data 

size on model performance, previous work [5] used varying 

maximum lengths (visits) of the EHR. This resulted in a 

different number of patients in each of the four experiments as 

the number of visits was not consistent across patients. In our 

approach, we kept the number of patients consistent through 

the four predicting tasks, which revealed the temporal nature 

of prediction as the time to diagnosis varies. In this case, 

patients who had at least one of ICD-9, CPT, medication and 

topic feature in all four time windows were included in 

experiments. After processing data based on this method, 

10,148 patients were selected, where 3,747 were diagnosed 

with depression. Basic statistics of the data are shown in Table 

III.  

Ablation study Three feature sets were generated to compare 

the contribution to prediction of depression for demographics 

and topic features. There were applied to HCET: all data types 

(ICD-9 codes, CPT codes, medication lists, demographics, and 

topic features); ICD-9 codes, CPT codes, medication lists and 

topic features; ICD-9 codes, CPT codes, and medication lists. 

This ablation study was only applied to HCET while all 

baseline models used all data types as input. 

E. Training Details 

   All models were implemented in TensorFlow 1.12 and 

trained on a work station equipped with Intel Xeon E3-1245, 

32 GB RAM and two NVIDIA Ti 1060 GPUs. Adam [29] was 

selected as the optimizer, with the same learning rate of 1𝑒−3 

as [5] for HCET. The number of parameters is 2.5M, which 

mainly depends on the size of embedding matrices. Reported 

results are averaged over 10 random data splits: training 70%, 

validation 10% and test 20%. Models were trained with the 

minibatch of 50 patients for a total of 2,000 iterations to 

guarantee convergence. The validation set was evaluated at 

every 100 iterations for early stopping. The vanishing gradient 

problem was avoided by using skip connections. To address 

over fitting, L2 regularization with coefficient 1𝑒−4 was 

TABLE IV 

COMPARISON OF PREDICTION PERFORMANCE FOR DIFFERENT MODELS 

Prediction window Two weeks Three months Six months One year 

Models ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC 

Lasso 

(codes+demo+topic) 

0.66 

(0.01) 

0.55 

(0.02) 

0.65 

(0.02) 

0.52 

(0.03) 

0.63 

(0.02) 

0.51 

(0.03) 

0.63 

(0.02) 

0.50 

(0.03) 

SVM 

(codes+demo+topic) 

0.72 

(0.02) 

0.62 

(0.03) 

0.69 

(0.01) 

0.59 

(0.02) 

0.68 

(0.0176) 

0.57 

(0.02) 

0.68 

(0.02) 

0.57 

(0.03) 

MLP 

(codes+demo+topic) 

0.72 

(0.01) 

0.64 

(0.01) 

0.70 

(0.02) 

0.60 

(0.02) 

0.69 

(0.02) 

0.58 

(0.02) 

0.68 

(0.02) 

0.57 

(0.02) 

RF 
(codes+demo+topic) 

0.76 
(0.02) 

0.67 
(0.03) 

0.73 
(0.02) 

0.62 
(0.03) 

0.70 
(0.02) 

0.59 
(0.02) 

0.69 
(0.02) 

0.58 
(0.03) 

VAE+RF 

(codes+demo+topic) 

0.76 

(0.02) 

0.67 

(0.02) 

0.74 

(0.01) 

0.64 

(0.02) 

0.71 

(0.03) 

0.60 

(0.02) 

0.69 

(0.01) 

0.60 

(0.02) 

MiME* 

(codes) 

0.76 

(0.01) 

0.67 

(0.02) 

0.74 

(0.01) 

0.64 

(0.02) 

0.72 

(0.02) 

0.61 

(0.01) 

0.70 

(0.01) 

0.61 

(0.01) 

HCET 
(codes+demo) 

0.76 
(0.01) 

0.68 
(0.01) 

0.75 
(0.02) 

0.65 
(0.02) 

0.73 
(0.02) 

0.62 
(0.01) 

0.71 
(0.01) 

0.61 
(0.01) 

HCET 

(codes+demo+topic) 

0.81 † 

(0.01) 

0.73 † 

(0.02) 

0.80 † 

(0.02) 

0.71 † 

(0.02) 

0.78 † 

(0.01) 

0.68 † 

(0.02) 

0.75 † 

(0.01) 

0.66 † 

(0.02) 

HCET  + attention 

(codes+demo+topic) 

0.81 

(0.01) 

0.73 

(0.01) 

0.80 

(0.01) 

0.70 

(0.02) 

0.79** 

(0.01) 

0.69 

(0.01) 

0.78** 

(0.01) 

0.67 

(0.01) 

Codes denote data from ICD-9, CPT, and medication lists, while demo stands for demographic information. Values in parenthesis refer to standard deviations 

across randomizations and bold values denotes the highest in each column. † indicates the value is significantly better than MiME* (p<0.05) while ** denotes 

the value is significantly better than no attention (p<0.05). 

TABLE III 

STATISTICS OF DATA INPUT FOR HCET 

Total  of patients 
10,148 (Depressed:3,747; 

Non-depressed:6,401) 

Total  of visits 294,941 

Avg.  of visits  29.06 

 of unique codes 𝐷:1391, 𝐶:6927, 𝑀: 4181 

 of demographics per visit  2 (Age, Gender) 

 of topics per visit 100 

Max / Avg.  of ICD-9 codes per visit  69 / 1.74 

Max / Avg.  of CPT codes per visit  106 / 3.23 

Max / Avg.  of medication per visit  14 / 0.09 

Max / Avg.  of topics per visit 30 / 1.87 
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chosen for the two HCET models instead of using dropout. 

The embedding size 𝑧 was set as 200 and the number of nodes 

for the GRU was set at 256. The source code of HCET is 

available at https://github.com/lanyexiaosa/hcet. 

V. RESULTS 

A. Comparison of Performance in Depression Prediction 

Table IV displays the results from all baseline models and 

HCET with abalation analysis at four time points in advance 

of diagnosis in terms of receiver operating characteristic area 

under the curve (ROCAUC) and PRAUC. HCET using all 

EHR modalities with attention outperformed other models for 

every prediction window. Lasso generated the worst accuracy. 

There is no significant difference between results from RF and 

VAE+RF. There is conistent decrease of accuracy for each 

model as the prediction point moves further away from the 

time of diagnosis, where the number achieves the highest at 

window of two weeks.  

 

Adding demographic information and topic features 

improved the performance for HCET, which demonstrates 

their significant contribution in predicting depression as well 

as emphasizes the advantage of building a model being able to 

aggregate EHR data from multiple sources. The values 

between MiME* and HCET(codes+demo) are similar, while 

the difference between HCET(codes+demo) and 

HCET(code+demo+topics) are relatively large. HCET with all 

types of EHR data achieved the highest accuracy at each 

prediction than all baseline models. It generated the highest 

mean ROCAUC of 0.81 when predicting two weeks prior to 

the diagnosis, and the value dropped to 0.7541 when 

predicting one year in advance. After applying attention 

weights to each embedding at the code level, the ROCAUC at 

six months and one year are significantly improved with 

p=0.04 and p=3e-5, respectively. 

B. Model’s performance for each primary diagnosis  

Table V shows the results for each of three primary 

diagnosis in predictions windows of two weeks and one year 

in ROCAUC and PRAUC. Only HCET+attention was 

compared as it demonstrated the best performance in the 

previous ablation study on its own. HCET+attention also 

achieved the best performance for three primary diagnosis for 

two prediction windows. The low variance also indicated that  

it is more robust than other models. The ROCAUC for every 

model is quite similar even though the number of patients with 

breast cancer was substantially higher than the other diseases 

(Table I), which indicated no bias toward any primary 

diagnosis in the prediction. On the other hand, it is noticeable 

that the PRAUC for patients with myocardial infarction is 

relatively higher than other two.  

TABLE V 

COMPARISON OF PREDICTION PERFORMANCE FOR THREE PRIMARY DIAGNOSIS 

Prediction 

window 
Two weeks One year 

Diseases Breast cancer MI Liver cirrhosis Breast cancer MI Liver cirrhosis 

Models 
ROC 

AUC 

PR 

AUC 

ROC 

AUC 

PR 

AUC 

ROC 

AUC 

PR 

AUC 

ROC 

AUC 

PR 

AUC 

ROC 

AUC 

PR 

AUC 

ROC 

AUC 

PR 

AUC 

Lasso 

 

0.67 

(0.02) 

0.54 

(0.03) 

0.66 

(0.02) 

0.62 

(0.03) 

0.65 

(0.02) 

0.55 

(0.02) 

0.64 

(0.03) 

0.49 

(0.03) 

0.62 

(0.02) 

0.56 

(0.04) 

0.62 

(0.04) 

0.53 

(0.02) 

SVM 
0.72 

(0.02) 
0.61 

(0.03) 
0.71 

(0.02) 
0.68 

(0.03) 
0.71 

(0.02) 
0.60 

(0.03) 
0.68 

(0.03) 
0.56 

(0.03) 
0.67 

(0.02) 
0.62 

(0.03) 
0.66 

(0.02) 
0.55 

(0.02) 

MLP 
0.74 

(0.02) 

0.63 

(0.02) 

0.72 

(0.02) 

0.69 

(0.02) 

0.72 

(0.02) 

0.62 

(0.02) 

0.69 

(0.01) 

0.56 

(0.02) 

0.66 

(0.01) 

0.62 

(0.02) 

0.66 

(0.02) 

0.56 

(0.02) 

RF 
 

0.76 
(0.02) 

0.66 
(0.03) 

0.74 
(0.03) 

0.71 
(0.02) 

0.75 
(0.03) 

0.65 
(0.03) 

0.70 
(0.03) 

0.57 
(0.03) 

0.67 
(0.02) 

0.63 
(0.02) 

0.67 
(0.01) 

0.57 
(0.03) 

VAE+RF 
0.76 

(0.02) 
0.67 

(0.02) 
0.75 

(0.02) 
0.71 

(0.01) 
0.75 

(0.02) 
0.65 

(0.02) 
0.70 

(0.02) 
0.58 

(0.03) 
0.68 

(0.01) 
0.63 

(0.01) 
0.68 

(0.02) 
0.58 

(0.02) 

MiME* 

 

0.77 

(0.01) 

0.67 

(0.02) 

0.75 

(0.01) 

0.70 

(0.02) 

0.76 

(0.02) 

0.67 

(0.01) 

0.71 

(0.02) 

0.61 

(0.01) 

0.69 

(0.02) 

0.64 

(0.01) 

0.70 

(0.01) 

0.61 

(0.02) 

HCET+ 

attention 

0.81  

(0.01) 

0.73  

(0.01) 

0.79  

(0.01) 

0.77  

(0.01) 

0.80  

(0.01) 

0.72  

(0.01) 

0.78  

(0.01) 

0.67  

(0.01) 

0.77  

(0.01) 

0.71  

(0.01) 

0.77  

(0.01) 

0.66  

(0.01) 

 

 
Fig. 3 Confusion matrix for patients separated by three primary diagnosis at a 

window of two weeks for four models. The numbers are aggregated together 
with 10-fold cross validation. Label 0 means non-depressed while 1 means 

depressed.  
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Fig. 3 contains confusion matrices with patients separated in 

three primary diagnosis in the prediction window of two 

weeks from four models at the same threshold of 0.5, after 

probability calibration using isotonic regression [30]. 

VAE+RF is chosen here rather than SVM, MLP, RF and  as it 

generated slightly higher results in previous analysis for non-

temporal models. The numbers were aggregated from 10-fold 

cross validation. For each primary diagnosis, the distribution 

was imbalanced with a lower number of depressed patients. 

Lasso generated poor accuracy as it almost always predicted 

the negative class.  VAE+RF slighted reduced false negative 

cases but the number of true negatives was worse than Lasso. 

MiME* both improved the numbers in true positives and true 

negatives while HCET+attention improved it further. The 

average precision and recall over three primary diagnosis from 

HCET+attention were 0.88 and 0.76, respectively.  

C. Interpretation of Feature Importance from Attention 

Weights  

As mentioned in the method section, one advantage of RF 

over majority of deep learning models is the ability to provide 

information on the importance factor of each feature 

contributing to classification [31]. However, there is a 

consistent effort to improve the interpretability of deep 

learning models like HCET. Fig. 4 shows the attention weights 

for each of EHR data modalities over four prediction windows 

According the result, medication and demo both are below the 

average value of 0.2 in four prediction windows. Attention for 

ICD-9 is above 0.2 in window of two weeks and three months 

but it drops in six months and one year. There is a consistent 

increase of attention for topics while the attention from CPT 

always ranks top. 

VI. DISCUSSION 

Accoring to result in Table IV and V, Lasso generated the 

worst performance as it is a linear classifier which indicats 

that predicting depression from the EHR is a complicated task 

which requires more advanceted models. In addition, the 

Lasso method also provides sparsity of using more correlated 

features but the poor accuracy reveals that this task need to 

include more features than only the most correlated ones. 

There is no significant different between results from RF and 

VAE+RF which indicated the power of classfication maily 

depends on RF. Models starting from MiME* are all temporal 

models and they all achieved higher performance than non-

temporal ones, which further confirms the advantage of using 

a temporal model over non-temporal methods in predicting 

chronic disease. Furthermore, the performance consistently 

declined for each model as the prediction window moved 

further away from the diagnosis time point, which agrees with 

our expectation that records closer to the diagnosis are more 

likely to contain relevant information and provide better 

predictions.  

 The improvement of HCET with attention over all baseline 

models demonstrated the advantage of utilizing temporal 

information and hierarchical embedding to aggregate more 

heterogenous EHR data modalities in the prediction of 

depression. In the original implementation of the MiME model 

[5], interactions between diagnosis codes with associated 

procedures and medication were explicitly modeled, but this 

linked relation was not available in our EHR, a situation that 

commonly applies to other medical systems. Meanwhile, 

MiME also has another limitation of ignoring data when no 

diagnosis code is present for each visit. Our results indicate 

that treating all EHR data types in one level of code 

embedding during each visit is a viable solution in this 

scenario while being able to include all data from each visit. 

Another adjustment in our model is the extension of 

embedding to process demographics and clinical notes, which 

further addresses the heterogeneity issue in EHR data. 

Furthermore, we applied attention weights on each data 

modality, which further improved our model’s interpretability 

by showing the relative importance of each data modality.  

The results presented in Table IV and V both demonstrate 

the contribution of topic features in temporal models for 

predicting depression. Future work may include more clinical 

notes with other EHR modalities in a single model when 

building machine learning models for healthcare tasks. In 

addition, the attention weights of topics were consistently 

above the average value, demonstrating their important 

contribution in our prediction task. Topic modeling methods, 

such as LDA, are one way of processing texts. They are based 

on the bag of words assumption, which may not be the ideal 

way to represent clinical text. Future studies could utilize 

more recent NLP tools, such as BERT [32] to process clinical 

notes, which could further improve the overall performance. 

On the other hand, our attention weights were not applied on 

individual visits and codes, so HCET did not learn the latent 

relation between them. Future work can improve this attention 

by applying BERT [32] to do representation learning using 

self-attention and a multi-head attention mechanism.  

As mentioned in our methods section, the clinical standard 

for depression diagnosis is the PHQ-9 questionnaire, which is 

not routinely collected clinically. Instead, three criteria were 

used for determining depression diagnosis, which could have 

led to errors in our labels. Thus, future prospective studies 

could periodically administer PHQ-9 surveys, which may 

provide more precision in depression diagnosis. Temporal 

models could then be built to track the disease progression as 

well as early detection. There are other chronic diseases with 

high prevalence, such as hypertension, diabetes, and obesity, 

 
Fig. 4 Attention weights from every EHR data modalities in four prediction 

windows. Error bars denotes the standard deviation. The black dash line is at 

threshold of 1/5, which indicates constant weights in HCET models before. 
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which could provide more applications for the HCET model in 

future work. Finally, the EHR includes other data sources that 

are not currently included in the HCET model, such as 

laboratory results [17]. Future studies may extend the model to 

include these other data sources to further utilize the 

heterogeneity of EHR data.  

VII. CONCLUSION 

We have developed a temporal deep learning model, HCET, 

which was able to integrate five types of EHR data during 

multiple visits for depression prediction. HCET consistently 

outperformed the baseline models tested, achieving an 

increase in PRAUC of 0.07 over the best baseline model. The 

results demonstrate the ability of HCET as an approach to deal 

with data heterogeneity and sparsity in modeling the EHR. 

Adding attention weights improved model’s interpretability. In 

future work, HCET could possibly be used as the basis for 

constructing a screening tool by utilizing the models’ 

predictions to intervene with individuals who have a higher 

risk of developing depression. 
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