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Abstract. Hemorrhagic transformation (HT) is one of the most devas-
tating complications of reperfusion therapy in acute ischemic stroke. Pre-
diction of an upcoming HT remains beyond current techniques in routine
clinical practice. If made available, such information would benefit the
management of acute ischemic stroke patients and help to tailor thera-
peutic strategies. This study aims at providing a machine learning frame-
work for predicting occurrence and extent of HT from source perfusion-
weighted magnetic resonance imaging (PWI) combined with diffusion
weighted imaging (DWI). The model relies on a LSTM network based on
PWI combined with DWI imaging features into a fully connected neural
network. A retrospective comparative analysis performed on 155 acute
stroke patients demonstrate the efficacy of the LSTM model (AUC-ROC:
89.4%) against state-of-the-art machine learning models. Predicted like-
lihood of HT at the voxel level was evaluated against HT annotations of
stroke neurologists obtained from follow-up gradient recalled echo (GRE)
imaging.

1 Introduction

Acute ischemic stroke (AIS) has a lifetime risk of 25% worldwide. It is often asso-
ciated with significant disability, including motor and cognitive deterioration.
Recent advances in treatment of acute stroke have demonstrated that reperfu-
sion therapy, which dissolves or mechanically retrieves the clot, can significantly
improve the outcome of the patients [14]. However, reperfusion therapy is also
associated with complications; the most critical of which being intracerebral
bleeding, also referred to as hemorrhagic transformation (HT). The risks of HT
are particularly challenging to be assessed prior to reperfusion therapy. As HT
may occur in eloquent brain areas, the consequences of HT have been shown to
be associated with deteriorating symptoms, delayed neurological improvement,
and poor outcome. The development of a computational model that could pre-
dict the occurrence and spatial extent of an upcoming HT before the reperfusion
c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11767, pp. 177–185, 2019.
https://doi.org/10.1007/978-3-030-32251-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32251-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-32251-9_20


178 Y. Yu et al.

therapy would be very useful to refine eligibility criteria for reperfusion therapy.
In this study, we introduce and evaluate a computational model based on a Long
Short-Term Memory (LSTM) network that uses source perfusion-weighted mag-
netic resonance imaging (PWI) (i.e. after reconstruction from k-space but before
feature extraction).

PWI imaging of the brain is obtained via a series of T2*-weighted MRI after
the venous injection of a contrast bolus and is represented as a 4D dataset
characterizing blood flow through the vasculature and tissue. In the context of
stroke, it is common to process the contrast concentration time curve obtained
for each voxel and extract specific features related to physiological changes of
the tissue, such as cerebral blood volume (CBV) and time-to-maximum of the
residue function (Tmax) [3]. In addition, pre-established permeability metrics
can also be computed [11], including contrast slope, final contrast, and maxi-
mum concentration, reflecting brain-blood-barrier permeability. Some of these
perfusion parameters, such as low CBV, prolonged Tmax, increased permeabil-
ity, and lesion size on diffusion-weighted imaging (DWI), are known predictors of
parenchymal hemorrhage. Yet, most of studies have limited their predictions to
the simple occurrence of HT [15]. The severity, cerebral territory involved, and
eloquence have not been addressed. Recent works have demonstrated that the
use of source/native PWI has demonstrated an advantage over pre-defined maps
in the context of tissue fate prediction in acute stroke [1,7] and time from stroke
onset [8]. In these frameworks, the relevant features of the PWI are learned by a
machine learning algorithm rather than being pre-defined. The main rationale is
that the source PWI may contain additional information that is not captured by
pre-defined features and that could improve the prediction of the target variable.

The key contribution of this work is a predictive model of HT that explic-
itly models the temporal features of the PWI signal using an LSTM network.
LSTMs have outperformed standard machine learning models on a wide vari-
ety of applications related to temporal signals. Inspired by these findings, our
framework goes beyond the prediction of occurrence of HT and aims at estimat-
ing the spatial extent of the injury by identifying the voxels that will undergo
HT. Such predictions could bring valuable insights to stroke neurologists about
the affected territory and the chances of good outcome. We provide a compar-
ative analysis with standard models, including linear regression, kernel spectral
regression, SVM, and random forests.

2 Methods

MRI data was collected from patients identified with AIS within six hours of
symptom onset and admitted at a Chinese University Hospital from 06/2009
to 10/2016. Inclusion criteria were as follows: (1) acute ischemic lesions con-
firmed on DWI; (2) baseline perfusion MRI and DWI performed before reperfu-
sion therapy; and (3) Enhanced 3D gradient recalled echo (GRE) T2*-weighted
angiography performed 24 h after reperfusion therapy. Patients with significant
motion artifacts were excluded. The ethics committee of the Hospital approved
the study protocol.
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All patients underwent MRI on 3.0 T systems equipped with 8-channel head
coils. The routine MRI protocol including PWI, DWI, and GRE was performed
in AIS patients at baseline and 24 h after reperfusion therapy. Although the
acquisition parameters slightly varied during the seven-year period, the median
parameters of PWI were as follows: field of view (FOV) = 240 mm, repetitive time
(TR) = 1800 ms, echo time (TE) = 30 ms, acquisition matrix = 128 × 128, repet-
itive scanning times = 60, gadolinium dose = 15 ml, contrast speed = 4–5 ml/s,
average duration = 1 min 48 s. The parameters of DWI b1000 and b0 were:
FOV = 240 mm, TR = 4000 ms, TE = 80 ms, slice sickness = 5 mm, acquisition
matrix = 160 × 160. The parameters of GRE: TE = 4.5 ms (first echo), matrix
size = 256 × 256, flip angle = 20◦, slice thickness = 2.0 mm.

Baseline PWI, DWI, and 24 h follow-up GRE images were co-registered auto-
matically using SPM12. The arterial input function (AIF) was automatically
detected using Olea Sphere and computed from the average of the time-intensity
curve from several voxel locations. Because of the difference in acquisition set-
tings across subjects, AIF and PWI values were interpolated temporally using
bilinear interpolation to 60 time points with a 1.8s time interval. Presence of HT
at 24 h on GRE images was assessed by a stroke neurologist and delineated on
each patient using Osirix software.

2.1 Predictive Model

The predictive model of HT makes use of an LSTM architecture which captures
the temporal information stored in the PWI signal. The model aims at predicting
the occurrence of HT at the voxel level. The target output yi ∈ Y of the classifier
is a binary variable indicating the presence of bleeding at follow-up in the pixel
i. As a standard pre-processing, the concentration of the contrast agent Ci(t) at
time t in a voxel i is obtained from the pre-intervention PWI signal I by:

Ci(t) = −TE−1 log
(

Ii(t)
Ii(0)

)
(1)

where TE is the echo time, and I0, It are the image intensity measured before
bolus arrival and time t, respectively. The contrast concentration time curve C
over a 3 × 3 local patch is used as the input data to an LSTM model and is
therefore composed of 9 features over 60 time points. The LSTM is described
by 60 output values that are connected to the output yi using a fully connected
neural network.

Long Short-Term Memory Network. LSTM [9] is a variation of the recur-
rent neural network (RNN) which allows information to persist inside the net-
work via a loopy architecture. LSTMs are particularly well suited to represent
time series and are used in our framework to model the relationship between a
PWI image patch captured over time and the occurrence of HT post-intervention.
An LSTM cell is defined by a state that changes according to three types of gates:
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– Input Gates it ∈ RN update the state of the cell and decide which values
should be updated.

– Forget Gates ft ∈ RN are used to select relevant information with respect to
a previous state.

– Output Gates ot ∈ RN determine the final cell state and the output value.

Given an input sequence x = {x1, x2, . . . , xT } of length T with corresponding
memory cell unit Ct ∈ RN and hidden unit ht ∈ RN at time t, the parameters
of the model are updated sequentially, as follows:

ft = σ(Wf .[ht−1, xt] + bf ) (2)
it = σ(Wi.[ht−1, xt] + bi) (3)
ot = σ(Wo[ht−1, xt] + bo) (4)
C̃t = tanh(Wc.[ht−1, xt] + bC) (5)
Ct = ft ∗ Ct−1 + it ∗ C̃t (6)
ht = ot ∗ tanhCt (7)

The function σ(x) = (1 + e−x)−1 used to compute ft, it, ot is a sigmoid whose
values lie within the range [0, 1]. In addition to input, forget, and output gates
previously described, the LSTM makes use of a memory cell unit Ct obtained
from the sum of the previous memory cell unit Ct−1 modulated by ft, and a
function of the current input xt and previous hidden state ht−1 modulated by
the input gate it. The output gate ot is then used to determine what parts should
be considered and then multiplied with the tanh of the memory cell state Ct to
produce the hidden unit ht. By learning how much of the memory cell state Ct

should be transferred to the hidden state ht based on the input xt and previous
state, this structure allows the LSTM to capture complex temporal dynamics.

Operating Modes. In addition to building an LSTM model from the contrast
concentration Ci, we allow the framework to utilize additional inputs, including:
the contrast concentration of the AIF Caif ∈ RT , and the value of the DWI at b0
and b1000 Xdwi ∈ RS . A fully connected layer is used to combine the output of
the LSTM and additional inputs. The binary output is obtained with a Softmax
operator. We distinguish between several modes of operation depending on which
input is used:

Mode 1: LSTM PWI. The 3× 3 PWI patches for each time-point are used as
input to the LSTM model, corresponding to 9 features over 60 time-points.
The LSTM is defined by 60 output values.

Mode 2: LSTM PWI+AIF. Because the AIF is represented as a vector of 60
time-points, the input data now corresponds to 10 features by 60 time-points.

Mode 3: LSTM PWI+DWI. The outputs of the LSTM are combined with
two 3×3 patches obtained from DWI b0 and b1000 to form a 78 input vector
to the fully connected layer.
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Fig. 1. Illustration of our LSTM-NeuralNet Framework. Local patches extracted on
perfusion-weighted MRI (PWI) are combined together with the arterial input function
(AIF) to train a LSTM model (bottom left, diagram modified from [13]). The output of
the LSTM model is combined with local DWI image patches through a fully connected
neural network that maps the features to the presence of HT as observed on gradient
recalled echo (GRE) at followup.

Mode 4: LSTM PWI+DWI+AIF. The most comprehensive mode of oper-
ation combines the LSTM output (60) with the DWI b0 and b1000 patches,
leading to 78 features combined in the fully connected layer (Fig. 1).

2.2 Experiments

We evaluate the framework using a 10-fold cross-validation performed at the
voxel level. The accuracy of the model trained under 4 different modes is com-
pared to Linear Regression, SR-KDA [2], SVM [4], and Random Forests. The
LSTM training setup was defined with 60 cells of LSTM, 20 epochs, and trained
with Adam optimizer [10] using binary cross-entropy as loss function. The out-
puts of the LSTM cells are converted to a binary output by using a fully con-
nected neural network with a softmax optimization. The final output repre-
sents the probabilities of the HT class or the Non-HT class. The training of our
machine learning model took place on 50,000 input samples equally distributed
between HT and Non-HT voxels from various subjects as it has previously been
shown that balanced classes provides a more representative estimation of the
performance. The sampling method used in these experiments is similar to the
one described in previous work [16]. As part of the cross-validation, we ensure
that the data from a given patient were not included both in the training set
and the test set. The accuracy is calculated on the basis of the area under
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the curve of the receiver operating characteristic curve (AUC-ROC) and the
precision-recall curve (AUC-PR). The 95% confidence interval associated with
each result is obtained using the Bootstrapping method [5]. Optimization of the
hyperparameters was performed using a nested cross-validation.

3 Results

A total of 155 AIS patients satisfied the inclusion criteria and were included
in this study, among whom 41 patients were diagnosed with HT. The results of
each machine learning algorithm evaluated in this study are listed in Table 1 and
illustrated in Fig. 2. For all models, the best performing configuration was the
one that combines all inputs available (PWI, AIF and DWI), thus demonstrating
the complementary information contained in these input variables. The LSTM
model with PWI, DWI and AIF as inputs reached an AUC-ROC = 89.4 ± 4%,
AUC-PR = 87.4 ± 6%. In addition, we also reported the predictive accuracy of
manually defined ROI on Ktrans parametric map that was obtained in another
study [12] (64%). It should be noted, however, that it is not directly comparable
as the study was performed on another patient population and a different cross
validation setup.

Table 1. Accuracy of the models in predicting voxel-wise HT occurrence.

Model Input (s) AUC-ROC AUC-PR

LSTM PWI 83.1 ± 2.9% 82.3 ± 5.8%

LSTM-NeuralNet PWI+AIF 79.6 ± 2.6% 71.9 ± 5.8%

LSTM-NeuralNet PWI+DWI 88.3 ± 3.6% 86.4 ± 6.4%

LSTM-NeuralNet PWI+AIF+DWI 89.4± 4.3% 87.4± 5.9%

Linear regression PWI+AIF+DWI 58.5 ± 7.5% 44.4 ± 9.8%

Random forests PWI+AIF+DWI 79.8 ± 3.1% 67.1 ± 6.0%

SR-KDA [2] PWI+AIF+DWI 83.7 ± 2.6% 70.4 ± 5.8%

SVM [4] PWI+AIF+DWI 82.1 ± 2.9% 69.9 ± 5.8%

ROI-based [12] Ktrans 64.1 ± 6.0% NA

4 Discussion

The aim of this paper is to introduce a predictive model for HT in acute ischemic
stroke. The multi-input LSTM model achieved an AUC-ROC accuracy of 89%
which is very promising considering the challenging nature of the problem. A
significant finding of this paper is that the use of an LSTM improves the results
over standard models.
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Fig. 2. Illustration of the accuracy in terms of ROC and PR curves for various predic-
tive models of HT based on LSTM-NeuralNet architecture.

The development of hemorrhagic transformation in AIS is a complex patho-
physiological process, which is influenced by multiple factors such as reperfusion,
age, serum glucose level, stroke severity, and blood-brain barrier (BBB) damage.
Perfusion-weighted imaging is rich in information about brain tissue and blood
flow. It is particularly useful in detecting BBB permeability disruptions that are
linked to ongoing or future HT. PWI remains largely under-utilized in the con-
text of AIS due to the non-standard way of detecting these BBB impairments.
The relationship and causal influence of PWI imaging markers remains poorly
understood. In this context, the fact that machine learning models can predict
HT from imaging alone is particularly encouraging and could be considered as
part of new therapeutic strategies.

We can improve our present model by giving it additional features which
may or may not be related to MRI features. Similar to the multi-input LSTM
model, we can have these features fed to a different layer and the output of that
layer can be concatenated with the output of the LSTM.

While the prediction of future occurrence of HT has been successful on a
multi-center study [15], it is not clear that the presence of a small hemorrhage
would prevent the patient from being treated with endovascular clot-retrieval
therapy. In this paper, we are predicting the risk of HT at the voxel level, which
can be used to infer volumetric and eloquence measures that would be more
helpful in the clinical setting to rule out clot-retrieval therapy.

A limitation of this study is to include data with various degrees of revascu-
larization which is typically assessed using the Thrombolysis in Cerebral Infarc-
tion (TICI) score [6]. The TICI score, which varies from 0 (no reperfusion) to
3 (complete reperfusion), is useful to quantify the degree of success in restor-
ing blood flow after clot-retrieval intervention. A multi-center evaluation of the
model on a more representative set of cases would be beneficial. A specific pre-
dictive model could be trained for various degrees of revascularization. During
diagnosis, predicted maps of likelihood of HT development could help clinicians
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to visualize the risks/benefits of the intervention and the dependency to the
degree of revascularization.

5 Conclusion

This paper introduces a computational framework for the prediction of HT in
acute ischemic stroke. The contribution of the model is two-fold; first it utilizes
the source/native PWI signal and maps it to the development of HT using an
LSTM model which captures the temporal signature of tissue voxels at risk of
HT, second it does not only produce a prediction about overall presence of HT
in the follow-up images but rather provides predictions at the voxel level that
can be used to predict the severity of the HT and therefore better characterize
the risks associated with an endovascular intervention.
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