Publications

Journal Covers

E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. A, 125, 1671 (2021)​.
(doi: 10.1021/acs.jpca.0c10044)

E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. C, 125, 4333 (2021)​.
(doi: 10.1021/acs.jpcc.0c10436)

H. Robatjazi, J. L. Bao, L. Zhou, M. Zhang, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmon-driven carbon-fluorine (C(sp3)-F) bond activation with mechanistic insights into hot-carrier-mediated pathways,” Nat. Catal. 3, 564 (2020).
(doi: 10.1038/s41929-020-0466-5)

F. Libisch, C. Huang, and E. A. Carter, “Embedded Correlated Wavefunction Schemes: Theory and Applications,” Acc. Chem. Res.47, 2768 (2014).
(doi: 10.1021/ar500086h)

J. Xia, C. Huang, I. Shin, and E. A. Carter, “Can Orbital-Free Density Functional Theory Simulate Molecules?” J. Chem. Phys.136, 084102 (2012).

K. A. Marino, B. Hinnemann, and E. A. Carter, “Atomic-scale Insight and Design Principles for Turbine Engine Thermal Barrier Coatings from Theory,” Proc. Natl. Acad. Sci. U.S.A.108, 5480 (2011).

L. Hung and E. A. Carter, “Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics,” Chem. Phys. Lett.475, 163 (2009).
(doi: 10.1016/j.cplett.2009.04.059)

G. Ho, M. T. Ong, K. J. Caspersen, and E. A. Carter, “Energetics and Kinetics of Vacancy Diffusion and Aggregation in Shocked Aluminum via Orbital-Free Density Fuctional Theory,” PhysChemChemPhys9, 4951 (2007). 

B. Hinnemann and E. A. Carter, “Adsorption of Al, O, Hf, Y, Pt, and S atoms on α-Al2O3(0001),” J. Phys. Chem. C111, 7105 (2007).

P. Huang and E. A. Carter, “Local electronic structure around a single Kondo impurity,” Nano Letters6, 1146 (2006).

Research papers published by the Carter group are listed in reverse chronological order below. 

441. O. Y. Long, G. S. Gautam, and E. A. Carter, “Assessing cathode property prediction via exchange-correlation functionals with and without long-range dispersion corrections,” Phys. Chem. Chem. Phys., in press (2021).

440. P. Chen, D. Fan, Y. Zhang, A. Selloni, E. A. Carter, C. B. Arnold, D. C. Dankworth, S. P. Rucker, J. R. Chelikowsky, and N. Yao, “Breaking a Dative Bond with Mechanical Forces,” Nat. Commun., in press (2021).

439. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Coupled Effects of Temperature, Pressure, and pH on Water Oxidation Thermodynamics and Kinetics,” ACS Catal., 11, 11305 (2021). doi: 10.1021/acscatal.1c02428

438. R. B. Wexler, G. S. Gautam, E. B. Stechel, and E. A. Carter, “Factors Governing Oxygen Vacancy Formation in Oxide Perovskites,” J. Am. Chem. Soc., 143, 13212 (2021). doi: 10.1021/jacs.1c05570

437. J. M. P. Martirez and E. A. Carter, “Metal-to-Ligand Charge-Transfer Spectrum of a Ru-Bipyridine-Sensitized TiO2 Cluster from Embedded Multiconfigurational Excited-State Theory,” J. Phys. Chem. A, 125, 4998 (2021). (Virtual Special Issue on “125 Years of The Journal of Physical Chemistry”) doi: 10.1021/acs.jpca.1c02628

436. J. M. P. Martirez and E. A. Carter, “Projector-Free Capped-Fragment Scheme within Density Functional Embedding Theory for Covalent and Ionic Compounds,” J. Chem. Theory Comput., 17, 4105 (2021). doi: 10.1021/acs.jctc.1c00285

435. L. Zhou, M. Lou, J. L. Bao, C. Zhang, J. G. Liu, J. M. P. Martirez, S. Tian, L. Yuan, D. F. Swearer, H. Robatjazi, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot carrier multiplication in plasmonic photocatalysis,” Proc. Natl. Acad. Sci. U.S.A., 118, e2022109118 (2021). doi: 10.1073/pnas.2022109118

434. Q. Zhao, J. M. P. Martirez, and E. A. Carter, “Revisiting Understanding of Electrochemical CO2 Reduction on Cu(111): Competing Proton-Coupled Electron Transfer Reaction Mechanisms Revealed by Embedded Correlated Wavefunction Theory,” J. Am. Chem. Soc., 143, 6152 (2021). doi: 10.1021/jacs.1c00880

433. J. M. P. Martirez, J. L. Bao, and E. A. Carter, “First-Principles Insights into Plasmon-Induced Catalysis,” Annu. Rev. Phys. Chem., 72, 99 (2021). doi: 10.1146/annurev-physchem-061020-053501

432. R. B. Wexler, G. S. Gautam, and E. A. Carter, “Optimizing kesterite solar cells from Cu2ZnSnS4 to Cu2CdGe(S,Se)4,” J. Mater. Chem. A, 9, 9882 (2021). doi: 10.1039/dota11603c

431. E. A. Carter, “Autobiography of Emily A. Carter,” J. Phys. Chem. A, 125, 1671 (2021). doi: 10.1021/acs.jpca.0c10044; J. Phys. Chem. C, 125, 4333 (2021). doi: 10.1021/acs.jpcc.0c10436

430. A. J. Tkalych, H. Zhuang, and E. A. Carter, “An Integrated Methodology for Screening Hydrogen Evolution Reaction Catalysts: Pt/Mo2C as an Example,” in Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile (In Honor of William A. Goddard’s Contributions to Science and Engineering), Vol. 284, pp. 719-731, Richard Muller & Sadasivan Shankar, Eds. (Springer Series in Materials Science), ISBN 978-3-030-18777-4 (2021). doi: 10.1007/978-3-030-18778-1_31

429. R. Sheil, J. M. P. Martirez, X. Sang, E. A. Carter, and J. P. Chang, “Precise Control of Nanoscale Cu Etching via Gas-Phase Oxidation and Chemical Complexation,” J. Phys. Chem. C, 125, 1819 (2021). doi: 10.1021/acs.jpcc.0c08932

428. S. Xu and E. A. Carter, “CO2 Photoelectrochemical Reduction Catalyzed by a GaP(001) Photoelectrode,” ACS Catal., 11, 1233 (2021). doi: 10.1021/acscatal.0c04240

427. A. Gupta, A. G. Rajan, E. A. Carter, and H. A. Stone, “Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model,” Phys. Rev. Lett., 125, 188004 (2020). doi: 10.1103/PhysRevLett.125.188004

426. L. Li, S. Xu, and E. A. Carter, “First-Principles Modeling of Sodium Ion and Water Intercalation into Titanium Disulfide Interlayers for Water Desalination,” Chem. Mater., 32, 10678 (2020). doi: 10.1021/acs.chemmater.0c03891

425. A. Gupta, A. G. Rajan, E. A. Carter, and H. A. Stone, “Thermodynamics of Electrical Double Layers with Electrostatic Correlations,” J. Phys. Chem. C, 124, 26830 (2020). doi: 10.1021/acs.jpcc.0c08554

424. G. S. Gautam, E. B. Stechel, and E. A. Carter, “Exploring Ca-Ce-M-O (M = 3d Transition Metal) Oxide Perovskites for Solar Thermochemical Applications,” Chem. Mater., 32, 9964 (2020). doi: 10.1021/acs.chemmater.0c02912

423. A. G. Rajan and E. A. Carter, “Microkinetic model for pH- and potential-dependent oxygen evolution during water splitting on Fe-Doped β-NiOOH,” Energy Environ. Sci., 13, 4962 (2020). (“Hot Article”) doi: 10.1039/d0ee02292f

422. A. G. Rajan and E. A. Carter, “Discovering Competing Electrocatalytic Mechanisms and Their Overpotentials: Automated Enumeration of Oxygen Evolution Pathways,” J. Phys. Chem. C, 124, 24883 (2020). doi: 10.1021/acs.jpcc.0c08120

421. Q. Zhao, X. Zhang, J. M. P. Martirez, and E. A. Carter, “Benchmarking an Embedded Adaptive Sampling Configuration Interaction Method for Surface Reactions: H2 Desorption from and CH4 Dissociation on Cu(111),” J. Chem. Theory Comput., 16, 7078 (2020). doi: 10.1021/acs.jctc.0c00341

420. L. Li, J. M. P. Martirez, and E. A. Carter, “Prediction of Highly Selective Electrocatalytic Nitrogen Reduction at Low Overpotential on a Mo-doped g-GaN Monolayer,” ACS Catal., 10, 12841 (2020). doi: 10.1021/acscatal.0c03140

419. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Why do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?,” ACS Catal., 10, 11177 (2020). doi: 10.1021/acscatal.0c01862

418. Q. Zhao and E. A. Carter, “Revisiting Competing Paths in Electrochemical CO2 Reduction on Copper via Embedded Correlated Wavefunction Theory,” J. Chem. Theory Comput., 16, 6528 (2020). doi: 10.1021/acs.jctc.0c00583

417. G. S. Gautam, E. B. Stechel, and E. A. Carter, “A First-Principles-Based Sub-Lattice Formalism for Predicting Off-Stoichiometry in Materials for Solar Thermochemical Applications: The Example of Ceria,” Adv. Theory Simul., 3, 2000112 (2020). doi: 10.1002/adts.202000112

416. R. B. Wexler, G. S. Gautam, and E. A. Carter, “Exchange-correlation functional challenges in modeling quaternary chalcogenides,” Phys. Rev. B, 102, 054101 (2020). doi: 10.1103/PhysRevB.102.054101

415. H. Robatjazi, J. L. Bao, L. Zhou, M. Zhang, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmon-driven carbon-fluorine (C(sp3)-F) bond activation with mechanistic insights into hot-carrier-mediated pathways,” Nat. Catal., 3, 564 (2020). doi: 10.1038/s41929-020-0466-5

414. O. Y. Long, G. S. Gautam, and E. A. Carter, “Evaluating optimal U for 3d transition-metal oxides within the SCAN+U framework,” Phys. Rev. Mat.4, 045401 (2020). doi: 10.1103/PhysRevMaterials.4.045401

413. H. Lischka, R. Shepard, T. Müller, P. G. Szalay, R. M. Pitzer, A. J. A. Aquino, M. M. Araújo do Nascimento, M. Barbatti, L. T. Belcher, J.-P. Blaudeau, I. Borges Jr., S. R. Brozell, E. A. Carter, A. Das, G. Gidofalvi, L. Gonzalez, W. L. Hase, G. Kedziora, M. Kertesz, F. Kossoski, F. B. C. Machado, S. Matsika, S. A. do Monte, D. Nachtigallova, R. Nieman, M. Oppel, C. A. Parish, F. Plasser, R. F. K. Spada, E. A. Stahlberg, E. Ventura, D. R. Yarkony, and Z. Zhang, “The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry,” J. Chem. Phys.152, 134110 (2020). doi: 10.1063/1.5144267

412. S. Xu and E. A. Carter, “Oxidation State of GaP Photoelectrode Surfaces under Electrochemical Conditions for Photocatalytic CO2 Reduction,” J. Phys. Chem. B, 124, 2255 (2020). doi: 10.1021/acs.jpcb.0c01236

411. J. M. P. Martirez and E. A. Carter, “Secondary Transition-Metal Dopants for Enhanced Electrochemical O2 Formation and Desorption on Fe-doped β-NiOOH,” ACS Energy Lett., 5, 962 (2020). doi: 10.1021/acsenergylett.9b02761

410. J. M. P. Martirez and E. A. Carter, “Noninnocent Influence of Host β-NiOOH Redox Activity on Transition-Metal Dopants’ Efficacy as Active Sites in Electrocatalytic Water Oxidation,” ACS Catal., 10, 2720 (2020). doi: 10.1021/acscatal.9b05092

409. A. G. Rajan, J. M. P. Martirez, and E. A. Carter, “Facet-Independent Oxygen Evolution Activity of Pure β-NiOOH: Different Chemistries Leading to Similar Overpotentials,” J. Am. Chem. Soc., 142, 3600 (2020). doi: 10.1021/jacs.9b13708

408. L. Zhou, J. M. P. Martirez, J. Finzel, C. Zhang, D. F. Swearer, S. Tian, H. Robatjazi, M. Lou, L. Dong, L. Henderson, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts,” Nat. Energy, 5, 61 (2020). doi: 10.1038/s41560-019-0517-9

407. B. G. del Rio, G. S. Gautam, and E. A. Carter, “Deuterium addition to liquid Li-Sn alloys: implications for plasma-facing applications,” Nucl. Fusion, 60, 016025 (2019). doi: 10.1088/1741-4326/ab523c

406. S. Xu and E. A. Carter, “Optimal functionalization of a molecular electrocatalyst for hydride transfer,” Proc. Natl. Acad. Sci. U.S.A., 116, 22953 (2019). doi: 10.1073/pnas.1911948116

405. S. Hadke, S. Levcenko, G. S. Gautam, C. J. Hages, J. A. Márquez, F. Oliva, V. Izquierdo-Roca, E. A. Carter, T. Unold, and L. H. Wong, “Suppressed Deep Traps and Bandgap Fluctuations in Cu2CdSnS4 Solar Cells with ≈8% Efficiency,” Adv. Energy Mater., 1902509 (2019) doi: 10.1002/aenm.201902509

404. C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, and C. Williams, “The technological and economic prospects for CO2 utilisation and removal,” Nature, 575, 87 (2019). doi: 10.1038/s41586-019-1681-6

403. J. L. Bao and E. A. Carter, “Surface-Plasmon-Induced Ammonia Decomposition on Copper: Excited-State Reaction Pathways Revealed by Embedded Correlated Wavefunction Theory,” ACS Nano, 13, 9944 (2019). doi: 10.1021/acsnano.9b05030

402. W. C. Witt and E. A. Carter, “Kinetic energy density of nearly free electrons. II: Response functionals of the electron density,” Phys. Rev. B, 100, 125107 (2019). doi: 10.1103/PhysRevB.100.125107

401. W. C. Witt and E. A. Carter, “Kinetic energy density of nearly free electrons. I. Response functionals of the external potential,” Phys. Rev. B, 100, 125106 (2019). doi: 10.1103/PhysRevB.100.125106

400. J. L. Bao and E. A. Carter, “Rationalizing the Hot-Carrier-Mediated Reaction Mechanisms and Kinetics for Ammonia Decomposition on Ruthenium-Doped Copper Nanoparticles,” J. Am. Chem. Soc., 141, 13320 (2019). doi: 10.1021/jacs.9b06804

399. W. C. Witt, K. Jiang, and E. A. Carter, “Upper bound to the gradient-based kinetic energy density of noninteracting electrons in an external potential,” J. Chem. Phys., 151, 064113 (2019). doi: 10.1063/1.5108896

398. D. F. Swearer, H. Robatjazi, J. M. P. Martirez, M. Zhang, L. Zhou, E. A. Carter, P. Nordlander, and N. J. Halas, “Plasmonic Photocatalysis of Nitrous Oxide into N2 and O2 using Aluminum-Iridium Antenna-Reactor Nanoparticles,” ACS Nano, 13, 8076 (2019). doi: 10.1021/acsnano.9b02924

397. L. Li and E. A. Carter, “Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers,” J. Am. Chem. Soc., 141, 10451 (2019). doi: 10.1021/jacs.9b04663

396. S. Xu and E. A. Carter, “Balancing Competing Reactions in Hydride Transfer Catalysis via Catalyst Surface Doping: The Ionization Energy Descriptor,” J. Am. Chem. Soc.141, 9895 (2019). doi: 10.1021/jacs.9b02897

395. S. Xu and E. A. Carter, “Theoretical Insights into Heterogeneous (Photo)electrochemical CO2 Reduction,” Chem. Rev.119, 6631 (2019). doi: 10.1021/acs.chemrev.8b00481; Virtual Issue on “Carbon Capture & Conversion,” J. Am. Chem. Soc., 142, 4955 (2020). doi: 10.1021/jacs.0c02356

394. L. Zhou, D. F. Swearer, H. Robatjazi, A. Alabastri, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Response to Comment on ‘Quantifying hot carrier and thermal contributions in plasmonic photocatalysis’,” Science364, eaaw9545 (2019). doi: 10.1126/science.aaw9545

393. B. Foerster, V. A. Spata, E. A. Carter, C. Sönnichsen, and S. Link, “Plasmon damping depends on the chemical nature of the nanoparticle interface,” Sci. Adv.5, eaav074 (2019). doi: 10.1126/sciadv.aav0704

392. S. Berman, G. S. Gautam, and E. A. Carter, “Role of Na and Ca as Isovalent Dopants in Cu2ZnSnS4 Solar Cells,” ACS Sustain. Chem. Eng.7, 5792 (2019). doi: 10.1021/acssuschemeng.8b05348; “Virtual Special Issue on Theories, Mechanisms, Materials, and Devices for Solar Energy Conversion,” ACS Sustain. Chem. Eng., 7, 10164 (2019). (Editorial) doi: 10.1021/acssuschemeng.9b02925

391. X. Zhang and E. A. Carter, “Subspace Density Matrix Functional Embedding Theory: Theory, Implementation, and Applications to Molecular Systems,” J. Chem. Theor. Comp.15, 949 (2019). doi: 10.1021/acs.jctc.8b00990

390. B. G. del Rio, E. K. de Jong, and E. A. Carter, “Properties of fusion-relevant liquid Li-Sn alloys: An ab initio molecular-dynamics study,” Nucl. Mat. Energy18, 326 (2019). doi: 10.1016/j.nme.2019.01.027

389. J. M. P. Martirez and E. A. Carter, “Unraveling Oxygen Evolution on Iron-Doped β-Nickel Oxyhydroxide: The Key Role of Highly Active Molecular-like Sites,” J. Am. Chem. Soc.141, 693 (2019). doi: 10.1021/jacs.8b12386

388. Z. Chen, J. M. P. Martirez, P. Zahl, E. A. Carter, and B. E. Koel, “Self-assembling of formic acid on the partially oxidized p(2×1) Cu(110) surface reconstruction at low coverages,” J. Chem. Phys.150 (2019). doi: 10.1063/1.5046697

387. S. Xu, L. Li, and E. A. Carter, “Why and How Carbon Dioxide Conversion to Methanol Happens on Functionalized Semiconductor Photoelectrodes,” J. Am. Chem. Soc.140 (2018). doi: 10.1021/jacs.8b09946

386. G. S. Gautam, T. P. Senftle, N. Alidoust, and E. A. Carter, “Novel Solar Cell Materials: Insights from First-Principles,” J. Phys. Chem. C122, 27107 (2018). doi: 10.1021/acs.jpcc.8b08185

385. Q. Ou and E. A. Carter, “Potential Functional Embedding Theory with an Improved Kohn-Sham Inversion Algorithm,” J. Chem. Theor. Comp.14, 5680 (2018). doi: 10.1021/acs.jctc.8b00717

384. L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, “Quantifying hot carrier and thermal contributions in plasmonic photocatalysis,” Science362, 69 (2018). doi: 10.1126/science.aat6967

383. G. S. Gautam and E. A. Carter, “Evaluating transition metal oxides within DFT-SCAN and SCAN+U frameworks for solar thermochemical applications,” Phys. Rev. Mater.2, 095401 (2018). doi: 10.1103/PhysRevMaterials.2.095401

382. B. G. del Rio, M. Chen, L. E. González, and E. A. Carter, “Orbital-free density functional theory simulation of collective dynamics coupling in liquid Sn,” J. Chem. Phys.149, 094504 (2018). (Editor’s Pick) doi: 10.1063/1.5040697; Scilight: doi: 10.1063/1.5054900

381. A. J. Tkalych, J. M. P. Martirez, and E. A. Carter, “Thermodynamic Evaluation of Trace-Amount Transition-Metal Ion Doping in NiOOH Films,” J. Electrochem. Soc.165, F907 (2018). doi: 10.1149/2.0101811jes

380. J. M. P. Martirez and E. A. Carter, “Effects of the Aqueous Environment on the Stability and Chemistry of β-NiOOH Surfaces,” Chem. Mater.30, 5205 (2018). doi: 10.1021/acs.chemmater.8b01866

379. L. D. Chen, M. Bajdich, J. M. P. Martirez, C. M. Krauter, J. A. Gauthier, E. A. Carter, A. C. Luntz, K. Chan, and J. K. Nørskov, “Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer,” Nat. Comm.9, 3202 (2018). doi: 10.1038/s41467-018-05511-y

378. A. J. Tkalych, J. M. P. Martirez, and E. A. Carter, “Effect of transition-metal-ion dopants on the oxygen evolution reaction on NiOOH(0001),” Phys. Chem. Chem. Phys.20, 19525 (2018). doi: 10.1039/c8cp02849d

377. G. S. Gautam, T. P. Senftle, and E. A. Carter, “Understanding the Effects of Cd and Ag Doping in Cu2ZnSnS4 Solar Cells,” Chem. Mater.30, 4543 (2018). doi: 10.1021/acs.chemmater.8b00677

376. S. Xu and E. A. Carter, “2-Pyridinide as an Active Catalytic Intermediate for CO2 Reduction on p-GaP Photoelectrodes: Lifetime and Selectivity,” J. Am. Chem. Soc.140, 8732 (2018). doi: 10.1021/jacs.8b03774

375. H. L. Zhuang, M. Chen, and E. A. Carter, “Orbital-free density functional theory characterization of the β’-Mg2Al3 Samson phase,” Phys. Rev. Mater.2, 073603 (2018). doi: 10.1103/PhysRevMaterials.2.073603

374. R. Yin, Y. Zhang, F. Libisch, E. A. Carter, H. Guo, and B. Jiang, “Dissociative Chemisorption of O2 on Al(111): Dynamics on a Correlated Wave-function-Based Potential Energy Surface,” J. Phys. Chem. Lett., 9, 3271 (2018). doi: 10.1021/acs.jpclett.8b01470

373. M. Lessio, T. P. Senftle, and E. A. Carter, “Hydride Shuttle Formation and Reaction with CO2 on GaP(110),” ChemSusChem11, 1558 (2018). doi: 10.1002/cssc.201800037

372. V. A. Spata and E. A. Carter, “Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances,” ACS Nano12, 3512 (2018). doi: 10.1021/acsnano.8b00352

371. W. C. Witt, B. G. del Rio, J. M. Dieterich, and E. A. Carter, “Orbital-free density functional theory for materials research,” J. Mater. Res.33, 777 (2018). doi: 10.1557/jmr.2017.462

370. M. L. Clark, P. L. Cheung, M. Lessio, E. A. Carter, and C. P. Kubiak, “Kinetic and Mechanistic Effects of Bipyridine (bpy) Substituent, Labile Ligand, and Brønsted Acid on Electrocatalytic CO2 Reduction by Re(bpy) Complexes,” ACS Catal.8, 2021 (2018). doi: 10.1021/acscatal.7b03971

369. X. Zhang and E. A. Carter, “Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets,” J. Chem. Phys.148, 034105 (2018). doi: 10.1063/1.5005839

368. J. M. P. Martirez and E. A. Carter, “Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR-to-visible light nanoplasmonics,” Science Advances3, eaao4710 (2017). doi: 10.1126/sciadv.aao4710

367. K. Yu and E. A. Carter, “Extending density functional embedding theory for covalently bonded systems,” Proc. Natl. Acad. Sci. U.S.A.114, E10861 (2017). doi: 10.1073/pnas.1712611114

366. K. Yu, C. M. Krauter, J. M. Dieterich, and E. A. Carter, “Density and Potential Functional Embedding: Theory and Practice,” in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, pp. 81-118, Mark Gordon, Ed. (John Wiley & Sons), ISBN: 978-1-119-12924-0 (2017). doi: 10.1002/9781119129271

365. T. P. Senftle, M. Lessio, and E. A. Carter, “The Role of Surface-Bound Dihydropyridine Analogues in Pyridine-Catalyzed CO2 Reduction over Semiconductor Photoelectrodes,” ACS Cent. Sci.3, 968 (2017). doi: 10.1021/acscentsci.7b00233

364. T. P. Senftle and E. A. Carter, “Theoretical Determination of Band Edge Alignments at the Water-CuInS2(112) Semiconductor Interface,” Langmuir33, 9479 (2017). doi: 10.1021/acs.langmuir.7b00668

363. M. Lessio, J. M. Dieterich, and E. A. Carter, “Hydride Transfer at the GaP(110)/Solution Interface: Mechanistic Implications for CO2 Reduction Catalyzed by Pyridine,” J. Phys. Chem. C121, 17321 (2017). doi: 10.1021/acs.jpcc.7b05052

362. B. G. del Rio, J. M. Dieterich, and E. A. Carter, “Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids”, J. Chem. Theory Comput.13, 3684 (2017). doi: 10.1021/acs.jctc.7b00565

361. H. Zhuang, M. Chen, and E. A. Carter, “Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory,” Modelling Simul. Mater. Sci. Eng.25, 075002 (2017). doi: 10.1088/1361-651X/aa7e0c

360. J. R. Vella, M. Chen, S. Fürstenberg, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Characterization of the liquid Li-solid Mo (110) interface from classical molecular dynamics for plasma-facing applications,” Nucl. Fusion57, 116036 (2017). doi: 10.1088/1741-4326/aa7e0d

359. A. J. Tkalych, H. Zhuang, and E. A. Carter, “A Density Functional + U Assessment of Oxygen Evolution Reaction Mechanisms on β-NiOOH,” ACS Catal.7, 5329 (2017). doi: 10.1021/acscatal.7b00999; Correction: ACS Catal., 8, 6070 (2018). doi: 10.1021/acscatal.8b01775

358. R. Zhang, L. Bursi, J. D. Cox, Y. Cui, C. M. Krauter, A. Alabastri, A. Manjavacas, A. Calzolari, S. Corni, E. Molinari, E. A. Carter, F. J. García de Abajo, H. Zhang, and P. Nordlander, “How to Identify Plasmons from the Optical Response of Nanostructures,” ACS Nano11, 7321 (2017). doi: 10.1021/acsnano.7b03421

357. A. Das, T. Müller, F. Plasser, D. B. Krisiloff, E. A. Carter, and H. Lischka, “Local Electron Correlation Treatment in Extended Multireference Calculations: Effect of Acceptor-Donor Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene,” J. Chem. Theor. Comp.13, 2612 (2017). doi: 10.1021/acs.jctc.7b00156

356. J. M. Dieterich, W. C. Witt, and E. A. Carter, “libKEDF: An Accelerated Library of Kinetic Energy Density Functionals,” J. Comput. Chem.38, 1552 (2017). doi: 10.1002/jcc.24806

355. J. M. Dieterich and E. A. Carter, “Quantum solutions for a sustainable energy future,” Nat. Rev. Chem.1, 0032 (2017). doi: 10.1038/s41570-017-0032

354. J. M. P. Martirez and E. A. Carter, “Excited-State N2 Dissociation Pathway on Fe-Functionalized Au,” J. Am. Chem. Soc.139, 4390 (2017). doi: 10.1021/jacs.6b12301

353. T. P. Senftle and E. A. Carter, “The Holy Grail: Chemistry Enabling an Economically Viable CO2 Capture, Utilization, and Storage Strategy,” Acc. Chem. Res.50, 472 (2017). doi: 10.1021/acs.accounts.6b00479; Virtual Issue on Carbon Capture and Conversion: J. Am. Chem. Soc., 142, 4955 (2020). doi: 10.1021/jacs.0c02356

352. J. Cheng, K. Yu, F. Libisch, J. M. Dieterich, and E. A. Carter, “Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests,” J. Chem. Theor. Comp.13, 1081 (2017). doi: 10.1021/acs.jctc.6b01011

351. J. Cheng, F. Libisch, K. Yu, M. Chen, J. M. Dieterich, and E. A. Carter, “Potential Functional Embedding Theory at the Correlated Wavefunction Level. 1. Mixed Basis Set Embedding,” J. Chem. Theor. Comp.13, 1067 (2017). doi: 10.1021/acs.jctc.6b01010

350. D. Felsmann, H. Zhao, Q. Wang, I. Graf, T. Tan, X. Yang, E. A. Carter, Y. Ju, and K. Kohse-Höinghaus, “Contributions to improving small ester combustion chemistry: Theory, model and experiments,” Proceedings of the Combustion Institute36, 543 (2017). doi: 10.1016/j.proci.2016.05.012

349. J. R. Vella, M. Chen, F. H. Stillinger, E. A. Carter, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field,” Phys. Rev. B95, 064202 (2017). doi: 10.1103/PhysRevB.95.064202

348. H. Zhuang, A. J. Tkalych, and E. A. Carter, “Surface Energy as a Descriptor of Catalytic Activity,” J. Phys. Chem. C120, 23698 (2016). doi: 10.1021/acs.jpcc.6b09687

347. A. M. Ritzmann, J. M. Dieterich, and E. A. Carter, “Density functional theory investigation of the electronic structure and defect chemistry of Sr1-xKxFeO3,” MRS Communications6, 145 (2016). doi: 10.1557/mrc.2016.23

346. M. Lessio, C. Riplinger, and E. A. Carter, “Stability of surface protons in pyridine-catalyzed CO2 reduction at p-GaP photoelectrodes,” Phys. Chem. Chem. Phys.18, 26434 (2016). doi: 10.1039/c6cp04272d

345. T. P. Senftle, M. Lessio, and E. A. Carter, “Interaction of Pyridine and Water with the Reconstructed Surfaces of GaP(111) and CdTe(111) Photoelectrodes: Implications for CO2 Reduction,” Chem. Mater.28, 5799 (2016). doi: 10.1021/acs.chemmater.6b02084

344. D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A.113, 8916 (2016). doi: 10.1073/pnas.1609769113

343. M. Lessio, T. P. Senftle, and E. A. Carter, “Is the Surface Playing a Role during Pyridine-Catalyzed CO2 Reduction on p-GaP Photoelectrodes?,” ACS Energy Lett.1, 464 (2016). doi: 10.1021/acsenergylett.6b00233

342. L. B. Roskop, E. F. Valeev, E. A. Carter, M. S. Gordon, and T. L. Windus, “Spin-free [2]R12 Basis Set Incompleteness Correction to the Local Multireference Configuration Interaction and the Local Multireference Average Coupled Pair Functional Methods,” J. Chem. Theor. Comp.12, 3176 (2016). doi: 10.1021/acs.jctc.6b00315

341. H. Zhuang, M. Chen, and E. A. Carter, “Elastic and Thermodynamic Properties of Complex Mg-Al Intermetallic Compounds via Orbital-Free Density Functional Theory,” Phys. Rev. Appl.5, 064021 (2016). doi: 10.1103/PhysRevApplied.5.064021

340. M. Chen, J. Roszell, E. V. Scoullos, C. Riplinger, B. E. Koel, and E. A. Carter, “Effect of Temperature on the Desorption of Lithium from Molybdenum (110) Surfaces: Implications for Fusion Reactor First Wall Materials,” J. Phys. Chem. B120, 6110 (2016). doi: 10.1021/acs.jpcb.6b02092

339. K. Yu and E. A. Carter, “Determining and Controlling the Stoichiometry of Cu2ZnSnS4 Photovoltaics: The Physics and Its Implications,” Chem. Mater.28, 4415 (2016). doi: 10.1021/acs.chemmater.6b01612

338. M. Chen, X.-W. Jiang, H. Zhuang, L.-W. Wang, and E. A. Carter, “Petascale Orbital-Free Density Functional Theory Enabled by Small-Box Algorithms,” J. Comp. Theor. Comp.12, 2950 (2016). doi: 10.1021/acs.jctc.6b00326

337. A. M. Ritzmann, J. M. Dieterich, and E. A. Carter, “Density functional theory +U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3-δ),” Phys. Chem. Chem. Phys.18, 12260 (2016). doi: 10.1039/c6cp01720g

336. H. Zhuang, A. J. Tkalych, and E. A. Carter, “Understanding and Tuning the Hydrogen Evolution Reaction on Pt-Covered Tungsten Carbide Cathodes,” J. Electrochem. Soc.163, F629 (2016). doi: 10.1149/2.0481607jes

335. J. Xia and E. A. Carter, “Orbital-free density functional theory study of amorphous Li-Si alloys and introduction of a simple density decomposition formalism,” Modell. Simul. Mater. Sci. Eng.24, 035014 (2016). doi: 10.1088/0965-0393/24/3/035014

334. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab Initio Reaction Kinetics of CH3OĊ(=O) and ĊH2OC(=O)H Radicals,” J. Phys. Chem. B120, 1590 (2016). doi: 10.1021/acs.jpcb.5b07959

333. J. M. P. Martirez and E. A. Carter, “Thermodynamic Constraints in Using AuM (M= Fe, Co, Ni and Mo) alloys as N2 Dissociation Catalysts: Functionalizing a Plasmon-Active Metal,” ACS Nano10, 2940 (2016). doi: 10.1021/acsnano.6b00085

332. L. Zhou, C. Zhang, M. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. Everitt, E. A. Carter, P. Nordlander, and N. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett.16, 1478 (2016). doi: 10.1021/acs.nanolett.5b05149

331. K. Yu and E. A. Carter, “Elucidating Structural Disorder and the Effects of Cu Vacancies on the Electronic Properties of Cu2ZnSnS4 Photovoltaics,” Chem. Mater.28, 864 (2016). doi: 10.1021/acs.chemmater.5b04351

330. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab Initio kinetics studies of hydrogen atom abstraction from methyl propanoate,” Phys. Chem. Chem. Phys.18, 4594 (2016). doi: 10.1039/c5cp07282d

329. N. Alidoust, M. Lessio, and E. A. Carter, “Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study,” J. Appl. Phys.119, 025102 (2016). doi: 10.1063/1.4939286

328. T. Abrams, M. A. Jaworski, M. Chen, E. A. Carter, R. Kaita, D. P. Stotler, G. De Temmerman, T. W. Morgan, M. A. van den Berg, and H. J. van der Meiden, “Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation,” Nucl. Fusion56, 016022 (2016). doi: 10.1088/0029-5515/56/1/016022

327. M. Chen, T. Abrams, M. A. Jaworski, and E. A. Carter, “Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study,” Nucl. Fusion56, 016020 (2016). doi: 10.1088/0029-5515/56/1/016020

326. C. X. Kronawitter, M. Lessio, P. Zahl, A. B. Muñoz-García, P. Sutter, E. A. Carter, and B. E. Koel, “Orbital-Resolved Imaging of the Adsorbed State of Pyridine on GaP(110) Identifies Sites Susceptible to Nucleophilic Attack,” J. Phys. Chem. C119, 28917 (2015). doi: 10.1021/acs.jpcc.5b08659

325. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab initio pressure-dependent reaction kinetics of methyl propanoate radicals,” Phys. Chem. Chem. Phys.17, 31061 (2015). doi: 10.1039/c5cp06004d

324. N. Alidoust and E. A. Carter, “Three-dimensional hole transport in nickel oxide by alloying with MgO or ZnO,” J. Appl. Phys.118, 185102 (2015). doi: 10.1063/1.4935478

323. D. B. Krisiloff, C. M. Krauter, F. J. Ricci, and E. A. Carter, “Density Fitting and Cholesky Decomposition of the Two-Electron Integrals in Local Multireference Configuration Interaction Theory,” J. Chem. Theor. Comp.11, 5242 (2015). doi: 10.1021/acs.jctc.5b00762

322. A. Tkalych, K. Yu, and E. A. Carter, “Structural and Electronic Features of β-Ni(OH)2 and β-NiOOH from First Principles,” J. Phys. Chem. C119, 24315 (2015). doi: 10.1021/acs.jpcc.5b08481

321. T. Tan, X. Yang, Y. Ju, and E. A. Carter, “Ab Initio Unimolecular Reaction Kinetics of CH2C(=O)OCH3 and CH3C(=O)OCH2 Radicals,” J. Phys. Chem. A119, 10553 (2015). doi: 10.1021/acs.jpca.5b08331

320. M. Lessio and E. A. Carter, “What is the Role of Pyridinium in Pyridine-Catalyzed CO2 Reduction on p-GaP Photocathodes?,” J. Am. Chem. Soc.137, 13248 (2015). doi: 10.1021/jacs.5b08639

319. J. Xia and E. A. Carter, “Reply to Comment on ‘Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation,'” Phys. Rev. B, 91, 045124 (2015),” Phys. Rev. B92, 117102 (2015). doi: 10.1103/PhysRevB.92.117102

318. C. X. Kronawitter, M. Lessio, P. Zhao, C. Riplinger, J. A. Boscoboinik, D. Starr, P. Sutter, E. A. Carter, and B. E. Koel, “Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H2O Environments,” J. Phys. Chem. C119, 17762 (2015). doi: 10.1021/acs.jpcc.5b05361

317. M. Chen, J. R. Vella, F. H. Stillinger, E. A. Carter, A. Z. Panagiotopoulos, and P. G. Debenedetti, “Liquid Li Structure and Dynamics: A Comparison Between OFDFT and Second Nearest-Neighbor Embedded-Atom Method,” AIChE Journal61, 2841 (2015). doi: 10.1002/aic.14795

316. N. Alidoust and E. A. Carter, “First-principles assessment of hole transport in pure and Li-doped NiO,” Phys. Chem. Chem. Phys.17, 18098 (2015). doi: 10.1039/c5cp03429a

315. K. Yu, F. Libisch, and E. A. Carter, “Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states,” J. Chem. Phys.143, 102806 (2015). doi: 10.1063/1.4922260

314. T. Tan, X. Yang, C. M. Krauter, Y. Ju, and E. A. Carter, “Ab Initio Kinetics of Hydrogen Abstraction from Methyl Acetate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals,” J. Phys. Chem. A119, 6377 (2015). doi: 10.1021/acs.jpca.5b03506

313. M. C. Toroker and E. A. Carter, “Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion,” J. Mat. Sci.50, 5715 (2015). doi: 10.1007/s10853-015-9113-y

312. D. B. Krisiloff, J. M. Dieterich, F. Libisch, and E. A. Carter, “Numerical Challenges in a Cholesky-Decomposed Local Correlation Quantum Chemistry Framework,” in Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts, pp. 59-91, R. Melnick, Ed. (John Wiley & Sons, Inc.), ISBN: 978-1118853986 (2015). doi: 10.1002/9781118853887.ch3

311. C. Riplinger and E. A. Carter, “Cooperative Effects in Water Binding to Cuprous Oxide Surfaces,” J. Phys. Chem. C119, 9311 (2015). doi: 10.1021/acs.jpcc.5b00383

310. K. Yu and E. A. Carter, “A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells,” Chem. Mater.27, 2920 (2015). doi: 10.1021/acs.chemmater.5b00172

309. J. Cheng, F. Libisch, and E. A. Carter, “Dissociative Adsorption of O2 on Al(111): The Role of Orientational Degrees of Freedom,” J. Phys. Chem. Lett.6, 1661 (2015). doi: 10.1021/acs.jpclett.5b00597

308. V. B. Oyeyemi, J. M. Dieterich, D. B. Krisiloff, T. Tan, and E. A. Carter, “Bond Dissociation Energies of C10 and C18 Methyl Esters from Local Multireference Averaged-Coupled Pair Functional Theory,” J. Phys. Chem. A119, 3429 (2015). doi: 10.1021/jp512974k

307. M. Chen, J. Xia, C. Huang, J. M. Dieterich, L. Hung, I. Shin, and E. A. Carter, “Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations,” Comp. Phys. Comm.,190, 228 (2015). doi: 10.1016/j.cpc.2014.12.021

306. C. Riplinger and E. A. Carter, “Influence of Weak Brønsted Acids on Electrocatalytic CO2 Reduction by Manganese and Rhenium Bipyridine Catalysts,” ACS Catal.5, 900 (2015). doi: 10.1021/cs501687n

305. J. A. Keith, A. B. Muñoz-García, M. Lessio, and E. A. Carter, “Cluster Models for Studying CO2 Reduction on Semiconductor Photoelectrodes,” Top. Catal.58, 46 (2015). doi: 10.1007/s11244-014-0341-1

304. J. Xia and E. A. Carter, “Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation,” Phys. Rev. B,91, 045124 (2015). doi: 10.1103/PhysRevB.91.045124

303. X. Yang, D. Felsmann, N. Kurimoto, J. Krüger, T. Wada, T. Tan, E. A. Carter, K. Kohse-Höinghaus, and Y. Ju, “Kinetic studies of methyl acetate pyrolysis and oxidation in a flow reactor and a low-pressure flat flame using molecular-beam mass spectrometry,” Proceedings of the Combustion Institute35, 491 (2015). doi: 10.1016/j.proci.2014.05.058

302. J. M. Dieterich and E. A. Carter, “Assessment of a semi integral-direct local multi-reference configuration interaction implementation employing shared-memory parallelization,” Comp. Theor. Chem.1051, 47 (2015).(Editor’s Choice) doi: 10.1016/j.comptc.2014.10.030

301. C. Riplinger, M. D. Sampson, A. M. Ritzmann, C. P. Kubiak, and E. A. Carter, “Mechanistic Contrasts between Manganese and Rhenium Bipyridine Electrocatalysts for the Reduction of Carbon Dioxide,” J. Am. Chem. Soc.,136, 16285 (2014). doi: 10.1021/ja508192y

300. A. B. Muñoz-García, A. M. Ritzmann, M. Pavone, J. A, Keith, and E. A. Carter, “Oxygen Transport in Perovskite-Type Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics,” Acc. Chem. Res.47, 3340 (2014). doi: 10.1021/ar4003174

299. J. M. Dieterich, D. B. Krisiloff, A. Gaenko, F. Libisch, T. L. Windus, M. S. Gordon, and E. A. Carter, “Shared-memory parallelization of a local correlation multi-reference CI program,” Comput. Phys. Commun.185, 3175 (2014). doi: 10.1016/j.cpc.2014.08.016

298. C. X. Kronawitter, C. Riplinger, X. He, P. Zahl, E. A. Carter, P. Sutter, and B. E. Koel, “Hydrogen-Bonded Cyclic Water Clusters Nucleated on an Oxide Surface,” J. Am. Chem. Soc., 136, 13283 (2014). doi: 10.1021/ja5056214

297. F. Libisch, C. Huang, and E. A. Carter, “Embedded Correlated Wavefunction Schemes: Theory and Applications,” Acc. Chem. Res.47, 2768 (2014). (Cover Article) doi: 10.1021/ar500086h

296. C. X. Kronawitter, I. Zegkinoglou, S.-H. Shen, P. Liao, I. S. Cho, O. Zandi, K. Lashgari, G. Westin, J.-H. Guo, F. J. Himpsel, E. A. Carter, X. L. Zheng, T. W. Hamann, B. E. Koel, S. S. Mao, and L. Vayssieres, “Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations,” Energy Environ. Sci., 7, 3100 (2014). doi: 10.1039/c4ee01066c

295. V. B. Oyeyemi, J. A. Keith, and E. A. Carter, “Accurate Bond Energies of Biodiesel Methyl Esters from Multireference Averaged Coupled-Pair Functional Calculations,” J. Phys. Chem. A118, 7392 (2014). doi: 10.1021/jp412727w

294. S. Suthirakun, S. Cheetu Ammal, A. B. Muñoz-García, G. Xiao, F. Chen, H.-C. zur Loye, E. A. Carter, and A. Heyden, “Theoretical Investigation of H2 Oxidation on the Sr2Fe1.5Mo0.5O6 (001) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions,” J. Am. Chem. Soc.136, 8374 (2014). doi: 10.1021/ja502629j

293. N. Alidoust, M. C. Toroker, and E. A. Carter, “Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion,” J. Phys. Chem. B, 118, 7963 (2014). doi: 10.1021/jp500878s

292. M. Pavone, A. B. Muñoz-García, A. M. Ritzmann, and E. A. Carter, “First-Principles Study of Lanthanum Strontium Manganite: Insights into Electronic Structure and Oxygen Vacancy Formation,” J. Phys. Chem. C118, 13346 (2014). doi: 10.1021/jp500352h

291. I. Shin and E. A. Carter, “Simulations of dislocation mobility in magnesium from first principles,” Int. J. Plasticity,60, 58 (2014). doi: 10.1016/j.ijplas.2014.04.002

290. V. B. Oyeyemi, J. A. Keith, and E. A. Carter, “Trends in Bond Dissociation Energies of Alcohols and Aldehydes Computed with Multireference Averaged Coupled-Pair Functional Theory,” J. Phys. Chem. A118, 3039 (2014).doi: 10.1021/jp501636r

289. A. M. Ritzmann, M. Pavone, A. B. Muñoz-García, J. A. Keith, and E. A. Carter, “Ab initio DFT+U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states,” J. Mater. Chem. A2, 8060 (2014). doi: 10.1039/c4ta00801d

288. I. Shin and E. A. Carter, “Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors,” J. Chem. Phys.140, 18A531 (2014). doi: 10.1063/1.4869867

287. Y. Ke, F. Libisch, J. Xia, and E. A. Carter, “Angular momentum dependent orbital-free density functional theory: Formulation and implementation,” Phys. Rev. B89, 155112 (2014). doi: 10.1103/PhysRevB.89.155112

286. C. Huang, F. Libisch, Q. Peng, and E. A. Carter, “Time-dependent potential-functional embedding theory,” J. Chem. Phys.140, 124113 (2014). doi: 10.1063/1.4869538

285. K. Yu and E. A. Carter, “Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials,” J. Chem. Phys.140, 121105 (2014). doi: 10.1063/1.4869718

284. D. K. Kanan, J. A. Keith, and E. A. Carter, “First-Principles Modeling of Electrochemical Water Oxidation on MnO:ZnO(001),” ChemElectroChem1, 407 (2014). doi: 10.1002/celc.201300089

283. L. Isseroff Bendavid and E. A. Carter, “Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles,” in Topics in Current Chemistry, C. Di Valentin, S. Botti, and M. Cococcioni, Eds. (Springer, Germany), ISBN 978-3-642-55067-6 (2014). doi: 10.1007/128_2013_503

282. V. B. Oyeyemi, D. B. Krisiloff, J. A. Keith, F. Libisch, M. Pavone, and E. A. Carter, “Size-extensivity-corrected multireference configuration interaction schemes to accurately predict bond dissociation energies of oxygenated hydrocarbons,” J. Chem. Phys.140, 044317 (2014). doi: 10.1063/1.4862159

281. N. Alidoust, M. C. Toroker, J. A. Keith, and E. A. Carter, “Significant Reduction in NiO Band Gap Upon Formation of LixNi1−xO alloys: Applications to Solar Energy Conversion,” ChemSusChem7, 195 (2014). doi: 10.1002/cssc.201300595

280. J. Xia and E. A. Carter, “Orbital-free density functional theory study of crystalline Li-Si alloys,” J. Power Sources, 254, 62 (2014). doi: 10.1016/j.jpowsour.2013.12.097

279. D. B. Krisiloff, V. B. Oyeyemi, F. Libisch, and E. A. Carter, “Analysis of and remedies for unphysical ground states of the multireference averaged coupled-pair functional,” J. Chem. Phys.140, 024102 (2014). doi: 10.1063/1.4861035

278. I. Shin and E. A. Carter, “First-principles simulations of plasticity in body-centered-cubic magnesium-lithium alloys,” Acta Materialia64, 198 (2014). doi: 10.1016/j.actamat.2013.10.030

277. L. Isseroff Bendavid and E. A. Carter, “CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study,” J. Phys. Chem. C117, 26048 (2013). doi: 10.1021/jp407468t

276. L. Isseroff Bendavid and E. A. Carter, “First-Principles Predictions of the Structure, Stability, and Photocatalytic Potential of Cu2O Surfaces,” J. Phys. Chem. B117, 15750 (2013). doi: 10.1021/jp406454c

275. M. Chen, L. Hung, C. Huang, J. Xia, and E. A. Carter, “The melting point of lithium: an orbital-free first-principles molecular dynamics study,” Molecular Physics111, 3448 (2013). doi: 10.1080/00268976.2013.828379

274. J. A. Keith and E. A. Carter, “Theoretical Insights into Electrochemical CO2 Reduction Mechanisms Catalyzed by Surface-Bound Nitrogen Heterocycles,” J. Phys. Chem. Lett.4, 4058 (2013). doi: 10.1021/jz4021519; Correction: J. Phys. Chem. Lett.6, 568 (2015). doi: 10.1021/acs.jpclett.5b00170

273. F. Libisch, J. Cheng, and E. A. Carter, “Electron-Transfer-Induced Dissociation of H2 on Gold Nanoparticles: Excited-State Potential Energy Surfaces via Embedded Correlated Wavefunction Theory,” Z. Phys. Chem.227, 1455 (2013). doi: 10.1524/zpch.2013.0406 (Special Issue); Correction: F. Libisch, C. M. Krauter, and E. A. Carter, “Corrigendum to: Plasmon-Driven Dissociation of H2 on Gold Nanoclusters,” Z. Phys. Chem., 230, 131 (2016). doi: 10.1515/zpch-2015-5001

272. J. A. Keith, K. A. Grice, C. P. Kubiak, and E. A. Carter, “Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO2 Reduction by fac-Re(bpy)(CO)3Cl,” J. Am. Chem. Soc.135, 15823 (2013). doi: 10.1021/ja406456g

271. L. Isseroff Bendavid and E. A. Carter, “First principles study of bonding, adhesion, and electronic structure at the Cu2O(111)/ZnO(1010) interface,” Surf. Sci.618, 62 (2013). doi: 10.1016/j.susc.2013.07.027

270. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, “Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies,” MRS Communications3, 161 (2013). doi: 10.1557/mrc.2013.28

269. D. K. Kanan, J. A. Keith, and E. A. Carter, “Water adsorption on MnO:ZnO(001) – From single molecules to bilayer coverage,” Surf. Sci.617, 218 (2013). doi: 10.1016/j.susc.2013.07.023

268. I. Shin and E. A. Carter, “Possible origin of the discrepancy in the Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum,” Phys. Rev. B88, 064106 (2013). doi: 10.1103/PhysRevB.88.064106

267. Y. Ke, F. Libisch, J. Xia, L.-W. Wang, and E. A. Carter, “Angular-Momentum-Dependent Orbital-Free Density Functional Theory,” Phys. Rev. Lett.111, 066402 (2013). doi: 10.1103/PhysRevLett.111.066402

266. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, “Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La1-xSrxFeO3-δ (x=0, 0.25, 0.50),” Chem. Mater.25, 3011 (2013). doi: 10.1021/cm401052w

265. D. K. Kanan and E. A. Carter, “Optical Excitations in MnO and MnO:ZnO via Embedded CASPT2 Theory and Their Implications for Solar Energy Conversion,” J. Phys. Chem. C117, 13816 (2013). doi: 10.1021/jp4024475

264. D. K. Kanan and E. A. Carter, “Ab Initio study of electron and hole transport in pure and doped MnO and MnO:ZnO alloy,” J. Mater. Chem. A1, 9246 (2013). doi: 10.1039/c3ta11265a

263. E. E. Benson, M. D. Sampson, K. A. Grice, J. M. Smieja, J. D. Froehlich, D. Friebel, J. A. Kieth, E. A. Carter, A. Nilsson, and C. P. Kubiak, “The Electronic States of Rhenium Bipyridyl Electrocatalysts for CO2 Reduction as Revealed by X-ray Absorption Spectroscopy and Computational Quantum Chemistry,” Angew. Chem. Int. Ed.52, 4841 (2013). doi: 10.1002/anie.201209911

262. A. B. Muñoz-García, M. Pavone, A. M. Ritzmann, and E. A. Carter, “Oxide ion transport in Sr2Fe1.5M0.5O6-δ, a mixed ion-electron conductor: new insights from first principles modeling,” Phys. Chem. Chem. Phys., 15, 6250 (2013). doi: 10.1039/c3cp50995h

261. J. A. Keith and E. A. Carter, “Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms,” Chem. Sci.4, 1490 (2013). doi: 10.1039/c3sc22296a

260. P. Liao and E. A. Carter, “New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides,” Chem. Soc. Rev.42, 2401 (2013). doi: 10.1039/c2cs35267b

259. L. Y. Isseroff and E. A. Carter, “Electronic Structure of Pure and Doped Cuprous Oxide with Copper Vacancies: Suppression of Trap States,” Chem. Mater.25, 253 (2013). doi: 10.1021/cm3040278

258. M. C. Toroker and E. A. Carter, “Transition metal oxide alloys as potential solar energy conversion materials,” J. Mater. Chem. A1, 2474 (2013). (“Hot Article”) doi: 10.1039/c2ta00816e

257. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au,” Nano Letters13, 240 (2013). doi: 10.1021/nl303940z

256. J. Xia and E. A. Carter, “Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials,” Phys. Rev. B86, 235109 (2012). doi: 10.1103/PhysRevB.86.235109

255. F. Libisch, C. Huang, P. Liao, M. Pavone, and E. A. Carter, “Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection,” Phys. Rev. Lett.109, 198303 (2012). doi: 10.1103/PhysRevLett.109.198303

254. J. A. Keith and E. A. Carter, “Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals,” J. Chem. Theor. Comput.8, 3187 (2012). doi: 10.1021/ct300295g

253. A. B. Muñoz-García and E. A. Carter, “Non-innocent Dissociation of H2O on GaP(110): Implications for Electrochemical Reduction of CO2,” J. Am. Chem. Soc.134, 13600 (2012). (Highlighted Article) doi: 10.1021/ja3063106

252. T. Tan, M. Pavone, D. B. Krisiloff, and E. A. Carter, “Ab Initio Reaction Kinetics of Hydrogen Abstraction from Methyl Formate by Hydrogen, Methyl, Oxygen, Hydroxyl, and Hydroperoxy Radicals,” J. Phys. Chem. A116, 8431 (2012). doi: 10.1021/jp304811z; Correction: J. Phys. Chem. A, 119, 2186 (2015). doi: 10.1021/acs.jpca.5b01185

251. M. C. Toroker and E. A. Carter, “Hole Transport in Nonstoichiometric and Doped Wüstite,” J. Phys. Chem. C116, 17403 (2012). doi: 10.1021/jp3047664

250. P. Liao, J. A. Keith, and E. A. Carter, “Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis,” J. Am. Chem. Soc.134, 13296 (2012). doi: 10.1021/ja301567f

249. P. Liao and E. A. Carter, “Hole transport in pure and doped hematite,” J. Appl. Phys.112, 013701 (2012). doi: 10.1063/1.4730634

248. L. Y. Isseroff and E. A. Carter, “Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O,” Phys. Rev. B85, 235142 (2012). doi: 10.1103/PhysRevB.85.235142

247. J. A. Keith and E. A. Carter, “Theoretical Insights into Pyridinium-Based Photoelectrocatalytic Reduction of CO2,” J. Am. Chem. Soc.134, 7580 (2012). doi: 10.1021/ja300128e; Erratum: J. Am. Chem. Soc., 135, 7386 (2013). doi: 10.1021/ja402838u

246. D. K. Kanan and E. A. Carter, “Band Gap Engineering of MnO via ZnO Alloying: A Potential New Visible-Light Photocatalyst,” J. Phys. Chem. C, 116, 9876 (2012). doi: 10.1021/jp300590d

245. D. B. Krisiloff and E. A. Carter, “Approximately size extensive local multireference singles and doubles configuration interaction,” Phys. Chem. Chem. Phys.14, 7710 (2012). doi: 10.1039/c2cp23757a

244. A. B. Muñoz-García, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H.-C. zur Loye, and E. A. Carter, “Unveiling Structure-Property Relationships in Sr2Fe1.5M0.5O6-δ , an Electrode Material for Symmetric Solid Oxide Fuel Cells,” J. Am. Chem. Soc.134, 6826 (2012). doi: 10.1021/ja300831k

243. J. Xia, C. Huang, I. Shin, and E. A. Carter, “Can orbital-free density functional theory simulate molecules?,” J. Chem. Phys.136, 084102 (2012). (Cover Article) doi: 10.1063/1.3685604

242. C. Huang and E. A. Carter, “Toward an orbital-free density functional theory of transition metals based on an electron density decomposition,” Phys. Rev. B85, 045126 (2012). doi: 10.1103/PhysRevB.85.045126

241. L. Hung, C. Huang, and E. A. Carter, “Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory,” Comm. Comp. Phys.12, 135 (2012). doi: 10.4208/cicp.190111.090911a

240. V. Oyeyemi, J. A. Keith, M. Pavone and E. A. Carter, “Insufficient Hartree-Fock Exchange in Hybrid DFT Functionals Produces Bend Alkynyl Radical Structures,” J. Phys. Chem. Lett.3, 289 (2012). doi: 10.1021/jz201564g

239. D. K. Kanan, S. Sharifzadeh, and E. A. Carter, “Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype,” Chem. Phys. Lett.519, 18 (2012). (Editor’s Choice) doi: 10.1016/j.cplett.2011.11.003

238. I. Shin and E. A. Carter, “Orbital-free density functional theory simulations of dislocations in magnesium,” Modell. Simul. Mater. Sci. Eng.20, 015006 (2012). (Cover Article) doi: 10.1088/0965-0393/20/1/015006

237. V. B. Oyeyemi, M. Pavone, and E. A. Carter, “Accurate Bond Energies of Hydrocarbons from Complete Basis Set Extrapolated Multi-Reference Singles and Doubles Configuration Interaction,” Chem. Phys. Chem.12, 3354 (2011).doi: 10.1002/cphc.201100447

236. M. Pavone, A. M. Ritzmann, and E. A. Carter, “Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials,” Energy Environ. Sci.4, 4933 (2011). doi: 10.1039/c1ee02377b

235. P. Liao and E. A. Carter, “Optical Excitations in Hematite (α-Fe2O3) via Embedded Cluster Models,” A CASPT2 Study,” J. Phys. Chem. C115, 20795 (2011). doi: 10.1021/jp206991v

234. C. Huang and E. A. Carter, “Direct minimization of the optimized effective problem based on efficient finite differences,” Phys. Rev. B84165122 (2011). doi: 10.1103/PhysRevB.84.165122

233. C. Huang and E. A. Carter, “Potential-functional embedding theory for molecules and materials,” J. Chem. Phys.,135, 194104 (2011). (Editor’s Choice, Highlighted Article “Journal of Chemical Physics 80th Anniversary Collection”)  doi: 10.1063/1.3659293

232. A. B. Muñoz-García, M. Pavone, and E. A. Carter, “Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport,” Chem. Mater.23, 4525 (2011). doi: 10.1021/cm201799cdoi: 10.1021/cm201799c

231. M. Caspary Toroker, D. K. Kanan, N. Alidoust, L. Y. Isseroff, P. Liao, and E. A. Carter, “First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes,” Phys. Chem. Chem. Phys.13, 16644 (2011). doi: 10.1039/c1cp22128k

230. P. Liao and E. A. Carter, “Testing variations of the GW approximation on strongly correlated transition metal oxides: hematite (α-Fe2O3) as a benchmark,” Phys. Chem. Chem. Phys.13, 15189 (2011). doi: 10.1039/c1cp20829b

229. L. Hung and E. A. Carter, “Ductile processes at aluminum crack tips: comparison of orbital-free density functional theory with classical potential predictions,” Modell. Simul. Mater. Sci. Eng.19, 045002 (2011). doi: 10.1088/0965-0393/19/4/045002

228. C. Huang, M. Pavone, and E. A. Carter, “Quantum mechanical embedding theory based on a unique embedding potential,” J. Chem. Phys.134, 154110 (2011). doi: 10.1063/1.3577516

227. K. A. Marino, B. Hinnemann, and E. A. Carter, “Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory,” Proc. Natl. Acad. Sci. U.S.A.108, 5480 (2011). (Highlighted Article “From the Cover”) doi: 10.1073/pnas.1102426108

226. P. Liao, M. Caspary Toroker, and E. A. Carter, “Electron Transport in Pure and Doped Hematite,” Nano Letters11, 1775 (2011). doi: 10.1021/nl200356n

225. L. Hung and E. A. Carter, “Orbital-Free DFT Simulations of Elastic Response and Tensile Yielding of Ultrathin [111] Al Nanowires,” J. Phys. Chem. C, 115, 6269 (2011). doi: 10.1021/jp112196t

224. I. Milas, B. Hinnemann, and E. A. Carter, “Diffusion of Al, O, Pt, Hf, and Y atoms α-Al2O3(0001): implications for the role of alloying elements in thermal barrier coatings,” J. Mater. Chem.21, 1447 (2011). doi: 10.1039/c0jm02212h

223. T. S. Chwee and E. A. Carter, “Valence Excited States in Large Molecules via Local Multireference Singles and Doubles Configuration Interaction,” J. Chem. Theory Comput.7, 103 (2011). doi: 10.1021/ct100486q

222. T. S. Chwee and E. A. Carter, “Density fitting of two-electron integrals in local multireference single and double excitation configuration interaction calculations,” Molecular Physics108, 2519 (2010). doi: 10.1080/00268976.2010.508052

221. L. Hung, C. Huang, I.Shin, G. Ho, V. L. Lignères, and E. A. Carter, “Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations,” Comput. Phys. Comm.181, 2208 (2010). doi: 10.1016/j.cpc.2010.09.001

220. P. Liao and E. A. Carter, “Ab initio density functional theory + U predictions of the shear response of iron oxides,” Acta Materialia58, 5912 (2010). doi: 10.1016/j.actamat.2010.07.007

219. Q. Peng, X. Zhang, C. Huang, E. A. Carter, and G. Lu, “Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation,” Modell. Simul. Mater. Sci. Eng.18, 075003 (2010). doi: 10.1088/0965-0393/18/7/075003

218. P. Liao and E. A. Carter, “Ab initio DFT+U predictions of tensile properties of iron oxides,” J. Mater. Chem.20, 6703 (2010). doi: 10.1039/C0JM01199A

217. K. A. Marino and E. A. Carter, “Ni and Al diffusion in Ni-rich NiAl and the effect of Pt additions,” Intermetallics18, 1470 (2010). doi: 10.1016/j.intermet.2010.03.044

216. D. F. Johnson and E. A. Carter, “First Principles Assessment of Carbon Absorption into FeAl and Fe3Si: Toward Prevention of Cementite Formation and Metal Dusting of Steels,” J. Phys. Chem. C114, 4436 (2010). doi: 10.1021/jp907883h

215. K. A. Marino and E. A. Carter, “The effect of platinum on Al diffusion kinetics in β-NiAl: Implications for thermal barrier coating lifetime,” Acta Materialia58, 2726 (2010). doi: 10.1016/j.actamat.2010.01.008

214. T. S. Chwee and E. A. Carter, “Cholesky decomposition within local multireference singles and doubles configuration interaction,” J. Chem. Phys.132, 074104 (2010). doi: 10.1063/1.3315419

213. D. F. Johnson and E. A. Carter, “Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion,” J. Mater. Res.25, 315 (2010). doi: 10.1557/JMR.2010.0036

212. C. Huang and E. A. Carter, “Nonlocal orbital-free kinetic energy density functional for semiconductors,” Phys. Rev. B81, 045206 (2010). (Editor’s Suggestion) doi: 10.1103/PhysRevB.81.045206

211. D. F. Johnson and E. A. Carter, “First-principles assessment of hydrogen absorption into FeAl and Fe3Si: Towards prevention of steel embrittlement,” Acta Materialia58, 638 (2010). doi: 10.1016/j.actamat.2009.09.042

210. I. Shin, A. Ramasubramaniam, C. Huang, L. Hung, and E. A. Carter, “Orbital-free density functional theory simulations of dislocations in aluminum,” Philos. Mag.89, 3195 (2009). doi: 10.1080/14786430903246353

209. S. Sharifzadeh, P. Huang, and E. A. Carter, “Origin of tunneling lineshape trends for Kondo states of Co adatoms on coinage metal surfaces,” J. Phys.: Condens. Matter21, 355501 (2009). doi: 10.1088/0953-8984/21/35/355501

208. L. Hung and E. A. Carter, “Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics,” Chem. Phys. Lett.475, 163 (2009). (Cover Article) doi: 10.1016/j.cplett.2009.04.059

207. J. Chai, V. L. Lignères, G. Ho, E. A. Carter, and J. D. Weeks, “Orbital-free density functional theory: Linear scaling methods for kinetic potentials, and applications to solid Al and Si,“ Chem. Phys. Lett., 473, 263 (2009). doi: 10.1016/j.cplett.2009.03.064

206. G. Ho and E. A. Carter, “Mechanical Response of Aluminum Nanowires via Orbital-Free Density Functional Theory,” J. Comput. Theor. Nanos.6, 1236 (2009). (Cover Article) doi: 10.1166/jctn.2009.1172

205. N. J. Mosey and E. A. Carter, “Shear strength of chromia across multiple length scales: An LDA+U study,” Acta Materialia, 57, 2933 (2009). doi: 10.1016/j.actamat.2009.03.001

204.  A. Ramasubramaniam, M. Itakura, and E. A. Carter, “Interatomic potentials for hydrogen in α-iron based on density functional theory,” Phys. Rev. B, 79, 174101 (2009). doi: 10.1103/PhysRevB.79.174101; Erratum: Phys. Rev. B, 81, 099902(E), (2010). doi: 10.1103/PhysRevB.81.099902

203. D. F. Johnson and E. A. Carter, “Structure and adhesion of MoSi2/Ni interfaces: Evaluation of MoSi2 as an alternative bond coat alloy,” Surf. Sci.603, 1276 (2009). doi: 10.1016/j.susc.2009.03.018

202. D. F. Johnson and E. A. Carter, “Bonding and Adhesion at the SiC/Fe Interface,” J. Phys. Chem. A113, 4367 (2009). doi: 10.1021/jp8110259

201. I. Milas and E. A. Carter, “Effect of dopants on alumina grain boundary sliding: implications for creep inhibition,” J. Mater. Sci.44, 1741 (2009). doi: 10.1007/s10853-008-3191-z

200. S. Sharifzadeh, P. Huang, and E. A. Carter, “All-electron embedded correlated wavefunction theory for condensed matter electronic structure,” Chem. Phys. Lett.470, 347 (2009). doi: 10.1016/j.cplett.2009.01.072

199. K. A. Marino and E. A. Carter, “The Effect of Platinum on Diffusion Kinetics in β-NiAl: Implications for Thermal Barrier Coating Lifetimes,” ChemPhysChem10, 226 (2009). doi: 10.1002/cphc.200800528; Corrigendum: ChemPhysChem, 10, 2367 (2009). doi: 10.1002/cphc.200990058

198. N. J. Mosey and E. A. Carter, “Ab initio LDA+U prediction of the tensile properties of chromia across multiple length scales,” J. Mech. Phys. Solids57, 287 (2009). doi: 10.1016/j.jmps.2008.10.009

197. C. Huang and E. A. Carter, “Transferable local pseudopotentials for magnesium, aluminum and silicon,” Phys. Chem. Chem. Phys.10, 7109 (2008). doi: 10.1039/b810407g

196. K. A. Marino and E. A. Carter, “First-principles characterization of Ni diffusion kinetics in β-NiAl,” Phys. Rev. B78, 184105 (2008). doi: 10.1103/PhysRevB.78.184105; Erratum: Phys. Rev. B, 80, 069901(E), (2009). doi: 10.1103/PhysRevB.80.069901

195. G. Ho, V. L. Ligneres, and E. A. Carter, “Introducing PROFESS: A new program for orbital-free density functional theory calculations,” Comput. Phys. Commun.179, 839 (2008). doi: 10.1016/j.cpc.2008.07.002

194. A. Ramasubramaniam, M. Itakura, M. Ortiz, and E. A. Carter, “Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo Simulations,” J. Mater. Res.,23, 2757 (2008). doi: 10.1557/JMR.2008.0340

193. G. Ho, C. Huang, and E. A. Carter, “Describing metal surfaces and nanostructures with orbital-free density functional theory,” Curr. Opin. Solid State Mater. Sci.11, 57 (2008). doi: 10.1016/j.cossms.2008.06.005

192. Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, “Quantum simulation of materials at micron scales and beyond,” Phys. Rev. B78, 054118 (2008). doi: 10.1103/PhysRevB.78.054118

191. E. A. Carter, “Challenges in Modeling Materials Properties Without Experimental Input,” Science321, 800 (2008). doi: 10.1126/science.1158009

190. K. A. Marino and E. A. Carter, “The effect of platinum on defect formation energies in β-NiAl,” Acta Materialia56, 3502 (2008). doi: 10.1016/j.actamat.2008.03.029

189. G. Ho, V. L. Ligneres, and E. A. Carter, “Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions,” Phys. Rev. B78, 045105 (2008). doi: 10.1103/PhysRevB.78.045105

188. N. J. Mosey, P. Liao, and E. A. Carter, “Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations,” J. Chem. Phys.129, 014103 (2008). doi: 10.1063/1.2943142

187. T. S. Chwee, A. B. Szilva, R. Lindh, and E. A. Carter, “Linear scaling multireference singles and doubles configuration interaction,” J. Chem. Phys.128, 224106 (2008). doi: 10.1063/1.2937443

186. I. Milas, B. Hinnemann, and E. A. Carter, “Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep,” J. Mater. Res.23, 1494 (2008). doi: 10.1557/JMR.2008.0188

185. P. Huang and E. A. Carter, “Ab Initio Explanation of Tunneling Line Shapes for the Kondo Impurity State,” Nano Letters8, 1265 (2008). doi: 10.1021/nl0804203

184. S. Sharifzadeh, P. Huang, and E. A. Carter, “Embedded Configuration Interaction Description of CO on Cu(111): Resolution of the Site Preference Conundrum,” J. Phys. Chem. C112, 4649 (2008). doi: 10.1021/jp710890a

183. A. Andersen and E. A. Carter, “First-principles-derived kinetics of the reactions involved in low-temperature dimethyl ether oxidation,” Molecular Physics106, 367 (2008). doi: 10.1080/00268970701837008; Erratum: Molecular Physics, 106, 963 (2008). doi: 10.1080/00268970802201211

182. P. Huang and E. A. Carter, “Advances in Correlated Electronic Structure Methods for Solids, Surfaces, and Nanostructures,” Ann. Rev. Phys. Chem.59, 261 (2008). doi: 10.1146/annurev.physchem.59.032607.093528

181. D. F. Johnson and E. A. Carter, “Nonadiabaticity in the iron bcc to hcp phase transformation,” J. Chem. Phys.128, 104703 (2008). doi: 10.1063/1.2883592

180. A. Ramasubramaniam and E. A. Carter, “Coupled Quantum-Atomistic and Quantum-Continuum Mechanics Methods in Materials Research,” Materials Research Society Bulletin32, 913 (2007). doi: 10.1557/mrs2007.188

179. N. J. Mosey and E. A. Carter, “Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations,” Phys. Rev. B, 76, 155123 (2007). doi: 10.1103/PhysRevB.76.155123

178. G. Ho, M. T. Ong, K. J. Caspersen, and E. A. Carter, “Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminum via orbital-free density functional theory,” PhysChemChemPhys, 9, 4951 (2007). (Cover Article) doi: 10.1039/b705455f

177. B. Hinnemann and E. A. Carter, “Adsorption of Al, O, Hf, Y, Pt, and S Atoms on α-Al2O3(0001), “ J. Phys. Chem. C,111, 7105 (2007). (Cover Article) doi: 10.1021/jp068869c

176. K. M. Carling and E. A. Carter, “Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface,” Acta Materialia, 55, 2791 (2007). doi: 10.1016/j.actamat.2006.12.020

175. K. Niedfeldt, P. Nordlander, and E. A. Carter, “Prediction of structure-dependent charge transfer rates for a Li atom outside a Si(001) surface,” Surf. Sci. Letters601, L29 (2007). doi: 10.1016/j.susc.2006.12.085

174. Donald F. Johnson, D.E. Jiang, and E. A. Carter, “Structure, magnetism, and adhesion at Cr/Fe interfaces from density functional theory,” Surf. Sci.601, 699 (2007). doi: 10.1016/j.susc.2006.10.034

173. D.E. Jiang and E. A. Carter, “Prediction of a Highly Activated State of CO Adsorbed on an Al/Fe(100) Bimetallic Surface” J. Phys. Chem B110, 22213 (2006). doi: 10.1021/jp056123t

172. K. Niedfeldt, E. A. Carter, and P. Nordlander, “Influence of surface band gaps on the lifetimes of charge transfer states,” Surf. Sci.600, 291 (2006). doi: 10.1016/j.susc.2006.08.005

171. P. Huang and E. A. Carter, “Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter,” J. Chem. Phys125, 084102 (2006). doi: 10.1063/1.2336428

170. K. Niedfeldt, P. Nordlander, and E. A. Carter, “Mechanism of enhanced broadening of the ionization level of Li outside transition metal surfaces,” Phys. Rev. B74, 115109 (2006). doi: 10.1103/PhysRevB.74.115109

169. P. Huang and E. A. Carter, “Local Electronic structure around a Single Kondo Impurity,” Nano Letters6, 1146 (2006). (Cover Article) doi: 10.1021/nl0602847

168. R. L. Hayes, G.S. Ho, M. Ortiz, and E. A. Carter, “Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method,” Phil. Mag., 86, 2343 (2006). doi: 10.1080/14786430500525829

167. K. M. Carling, W. Glover, H. Gunaydin, T. Mitchell, and E. A. Carter, “Comparison of S, Pt, and Hf Adsorption on NiA1(110),” Surf. Sci., 600, 2079 (2006). doi: 10.1016/j.susc.2006.02.047

166. E. A. A. Jarvis and E. A. Carter, “A Nanoscale Mechanism of Fatigue in Ionic Solids,” Nano Letters6, 505 (2006).doi: 10.1021/nl0525655

165. A. Lew, K. Caspersen, E. A. Carter, and M. Ortiz, ” Quantum mechanics based multiscale modeling of stress-induced phase transformations in iron,” J. Mech. Phys. Solids, 54, 1276 (2006). doi: 10.1016/j.jmps.2005.11.009

164. A. Andersen and E. A. Carter, “Insight into Selected Reactions in Low-Temperature Dimethy Ether Combustion from Born-Oppenheimer Molecular Dynamics,” J. Phys. Chem. A110, 1393 (2006). doi: 10.1021/jp054509y

163. E. A. Carter and P. J. Rossky, “Editorial on Computational and Theoretical Chemistry,” Acc. Chem. Res., 39, 71 (2006). doi: 10.1021/ar050190o

162. R.L. Hayes and E.A. Carter, “Atomic origin of hysteresis during cyclic loading of Si due to bond rearrangements at the crack surfaces,” J. Chem. Phys.123, 244704 (2005). doi: 10.1063/1.2137692

161. V. Cocula, C. J. Pickard, and E. A. Carter, “Ultrasoft spin-dependent pseudopotentials,” J. Chem. Phys.123, 214101 (2005). doi: 10.1063/1.2121547

160. D. E. Jiang and E. A. Carter, “Effects of Alloying on the Chemistry of CO and H2S on Fe Surfaces,” J. Phys. Chem. B.109, 20469-20478 (2005). doi: 10.1021/jp052656q

159. D. E. Jiang and E. A. Carter, “First-principles study of the interfacial adhesion between SiO2 and MoSi2,” Phys. Rev. B72, 165410 (2005). doi: 10.1103/PhysRevB.72.165410

158. D. E. Jiang and E. A. Carter, “Prediction of strong adhesion at the MoSi2/Fe interface,” Acta Materialia53, 4489 (2005). doi: 10.1016/j.actamat.2005.06.001

157. B. Zhou and E. A. Carter, “First principles local pseudopotential for silver: Towards orbital-free density-functional theory for transition metals,” J. Chem. Phys., 122, 184108 (2005). doi: 10.1063/1.1897379

156. R. L. Hayes, M. Fago, M. Ortiz, and E. A. Carter, “Prediction of Dislocation Nucleation During Nanoindentation by the Orbital-Free Density Functional Theory Local Quasi-continuum Method,” Multiscale Modeling and Simulation4,359(2005). doi: 10.1137/040615869; Erratum: Multiscale Modeling and Simulation, 7, 1003 (2008). doi: 10.1137/080727531

155. V. Lignères and E. A. Carter, “An Introduction to Orbital-Free Density Functional Theory,” in Handbook of Materials Modeling, S.Yip (Ed.), p.137-148, (2005). doi: 10.1007/978-1-4020-3286-8_9

154. D. E. Jiang and E. A. Carter, “First principles study of H2S adsorption and dissociation on Fe(110),” Surf. Sci., 583, 60 (2005). doi: 10.1016/j.susc.2005.03.023

153. K. J. Caspersen and E. A. Carter, “Finding transition states for crystalline solid-solid phase transformations,” Proc. Natl. Acad. Sci., 102, 6738 (2005). doi: 10.1073/pnas.0408127102

152. D. E. Jiang and E. A. Carter, “Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles,” Phys. Rev. B 71, 045402 (2005). doi: 10.1103/PhysRevB.71.045402

151. B. Zhou, V. Lignères, and E. A. Carter, “Improving the orbital-free density functional theory description of covalent materials,” J. Chem. Phys. 122, 044103 (2005). doi: 10.1063/1.1834563

150. D. E. Jiang and E. A. Carter, “Adsorption, Diffusion, and Dissociation of H2S on Fe(100) from First Principles,” J. Phys. Chem. B, 108, 19140 (2004). doi: 10.1021/jp046475k

149. S. Serebrinsky, E. A. Carter, and M. Ortiz, “A quantum-mechanically informed continuum model of hydrogen embrittlement,” J. Mech. Phys. Sol., 52, 2403 (2004). doi: 10.1016/j.jmps.2004.02.010

148. D. E. Jiang and E. A. Carter, “Adsorption and dissociation of CO on Fe(110) from first principles,” Surf. Sci.570, 167-177 (2004). doi: 10.1016/j.susc.2004.07.035

147. M. Fago, R. L. Hayes, E. A. Carter, and M. Ortiz, “Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation,” Phys. Rev. B, 70, 100102(R) (2004). doi: 10.1103/PhysRevB.70.100102

146. K. J. Caspersen, A. Lew, M. Ortiz, and E. A. Carter, “Importance of Shear in the bcc-to-hcp Transformation in Iron,” Phys. Rev. Lett., 93,115501 (2004). doi: 10.1103/PhysRevLett.93.115501

145. D. E. Jiang and E. A. Carter, “First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals,” Acta Materialia52, 4801 (2004). doi: 10.1016/j.actamat.2004.06.037

144. E. Aprà, E. A. Carter, and A. Fortunelli, “Separability between valence and conduction bands in transition metal clusters,” Int. J. Quant. Chem., 100, 277 (2004). doi: 10.1002/qua.20192

143. K. Niedfeldt, E. A. Carter, and P. Nordlander, “First principles resonance widths for Li near an Al(001) surface: Predictions of scattered ion neutralization probabilities,” J. Chem. Phys., 121, 3751 (2004). doi: 10.1063/1.1777218

142. D. E. Jiang and E. A. Carter, “Diffusion of interstitial hydrogen into and through bcc Fe from first principles,” Phys. Rev. B70, 064102 (2004). doi: 10.1103/PhysRevB.70.064102

141. M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, and F. Wudl, “Oligoacenes: Theoretical Prediction of Open-Shell Singlet Diradical Ground States,” J. Am. Chem. Soc., 126, 7416 (2004). doi: 10.1021/ja048919w; Erratum: J. Am. Chem Soc., 126, 10493 (2004). doi: 10.1021/ja045878v

140. A. Arya and E. A. Carter, “Structure, bonding, and adhesion at the ZrC(100)/Fe(110) interface from first principles,”Surf. Sci., 560, 103 (2004). doi: 10.1016/j.susc.2004.04.022

139. R. L. Hayes, M. Ortiz, and E. A. Carter, “Universal binding-energy relation for crystals that accounts for surface relaxation,” Phys. Rev. B69, 172104 (2004). doi: 10.1103/PhysRevB.69.172104

138. R. Puthenkovilakam, E. A. Carter, and J. P. Chang, “First-principles exploration of alternative gate dielectrics: Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces,” Phys. Rev. B69, 155329 (2004). doi: 10.1103/PhysRevB.69.155329

137. E. A. Carter and D. Walter, “Reduced scaling electron correlation methods,” In von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR, editors, Encyclopedia of Computational Chemistry (online edition). John Wiley & Sons, Ltd, Chichester, UK. Article online posting date: (15th April 2004). doi: 10.1002/0470845015.cu0024

136. B. Zhou, Y. A. Wang, and E.A. Carter, “Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment,” Phys. Rev. B69 125109 (2004). doi: 10.1103/PhysRevB.69.125109

135. V. Cocula and E. A. Carter, “Breakdown of the pseudopotential approximation for magnetic systems: Predicting magnetic quenching at the V(001) surface with spin-dependent pseudopotentials,” Phys. Rev. B69, 052404 (2004). doi: 10.1103/PhysRevB.69.052404

134. A. Venkatnathan, A. B. Szilva, D. Walter, R. J. Gdanitz, and E. A. Carter, “Size extensive modification of local multireference configuration interaction,” J. Chem. Phys., 120, 1693 (2004). doi: 10.1063/1.1635796

133. D.E. Jiang and E. A. Carter, “Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles” Surf. Sci547, 85 (2003). doi: 10.1016/j.susc.2003.10.007

132. A. Andersen and E. A. Carter, “Hybrid Density Functional Theory Predictions of Low-Temperature Dimethyl Ether Combustion Pathways. II. Chain-Branching Energetics and Possible Role of the Criegee Intermediate,” J. Phys. Chem. A107, 9463 (2003). doi: 10.1021/jp035423c

131. V. Cocula, F. Starrost, S.C. Watson, and E.A. Carter, “Spin-dependent pseudopotentials in the solid-state environment: Applications to ferromagnetic and antiferromagnetic metals,” J. Chem. Phys., 119 , 7659 (2003). doi: 10.1063/1.1609399

130. D. E. Jiang and E. A. Carter, “Carbon dissolution and diffusion in ferrite and austenite from first principles,” Phys. Rev. B67, 214103 (2003). doi: 10.1103/PhysRevB.67.214103

129. A. Andersen and E. A. Carter, “A Hybrid Density Functional Theory Study of the Low-Temperature Dimethyl Ether Combustion Pathways. I: Chain-Propagation,” Israel J. of Chem42, 245 (2003). doi: 10.1560/YQM7-5E5M-523Q-AQG2

128. A. Arya and E. A. Carter, “Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles,” J. Chem. Phys., 118, 8982 (2003). doi: 10.1063/1.1565323; Erratum: J. Chem. Phys120, 1142 (2004). doi: 10.1063/1.1631815

127. D. Walter, A. Venkatnathan, and E. A. Carter, “Local correlation in the virtual Space in multireference singles and doubles configuration interaction,” J. Chem. Phys., 118, 8127 (2003). doi: 10.1063/1.1565314

126. K. M. Carling and E. A. Carter, “Orbital-free density functional theory calculations of the properties of Al, Mg and Al-Mg crystalline phases,” Mod. Sim. Mat. Sci. Eng., 11 , 339 (2003). doi: 10.1088/0965-0393/11/3/307

125. W. C. Chiou, Jr. and E. A. Carter, “Structure and stability of Fe3C-cementite surfaces from first principles,” Surf. Sci., 530, 87 (2003). doi: 10.1016/S0039-6028(03)00352-2

124. E. A. A. Jarvis and E. A. Carter, “Exploiting Covalency to Enhance Metal-Oxide and Oxide-Oxide Adhesion at Heterogeneous Interfaces,” J. of the Am. Ceramic Society86, 373 (2003). doi: 10.1111/j.1151-2916.2003.tb03309.x

123. A. Andersen and E. A. Carter, “First-Principles Dynamics along the Reaction Path of CH3CH+ O→ H2C=CH+ HOO: Evidence for Vibronic State Mixing and Neutral Hydrogen Transfer,” J. Phys. Chem. A., 106, 9672 (2002). doi: 10.1021/jp0206267

122. E. A. A. Jarvis and E. A. Carter, “An Atomic Perspective of a Doped Metal-Oxide Interface,” J. Phys. Chem. B, 106, 7995 (2002). doi: 10.1021/jp0257348

121. E. A. Jarvis and E. A. Carter, “Importance of open-shell effects in adhesion at metal-ceramic interfaces,” Phys. Rev. B66, 100103 (2002). doi: 10.1103/PhysRevB.66.100103

120. D. Walter, A. Szilva, K. Niedfeldt, and E. A. Carter, “Local weak-pairs pseudospectral multireference configuration interaction,” J. Chem. Phys., 117, 1982 (2002). doi: 10.1063/1.1487816

119. T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, “Reply to the Comment on ‘Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles’, Phys. Rev. Lett., 86, 5954 (2001) by Klüner et al.” Phys. Rev. Lett., 88, 209702 (2002). doi: 10.1103/PhysRevLett.88.209702

118. F. Starrost and E. A. Carter, “Modeling the full monty: baring the nature of surfaces across time and space,” Surf. Sci. Millenium Issue500, 323 (2002). doi: 10.1016/S0039-6028(01)01546-1

117. E. A. Jarvis and E. A. Carter, “The Role of Reactive Elements in the Bond Coat for Thermal Barrier Coatings,” Comp. Sci. Eng., 4, 33 (2002). doi: 10.1109/5992.988645

116. T. Klüner, N. Govind, Y. A. Wang, and E. A. Carter, “Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states,” J. Chem. Phys116, 42 (2002). doi: 10.1063/1.1420748

115. F. Starrost, H. Kim, S. C. Watson, E. Kaxiras, and E. A. Carter, “Density-functional theory modeling of bulk magnetism with spin-dependent pseudopotentials,” Phys. Rev. B64, 235105 (2001). doi: 10.1103/PhysRevB.64.235105

114. D. Walter and E. A. Carter, “Multi-reference weak pairs local configuration interaction: efficient calculations of bond breaking,” Chem. Phys. Lett., 346, 177 (2001). doi: 10.1016/S0009-2614(01)00966-6

113. F. Starrost and E. A. Carter, “Quantum structural methods for the solid state and surfaces,” in the Encyclopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. Spencer, Eds. (Institute of Physics), 2, 1947 (2001). doi: 10.1887/0750303131/b984v2c36 (Online PDF)

112. E. A. A. Jarvis, A. Christensen, and E. A. Carter, “Weak bonding of alumina coatings on Ni(111),” Surf. Sci., 487, 55 (2001). doi: 10.1016/S0039-6028(01)01071-8

111. T. Kluener, N. Govind, Y. A. Wang, and E. A. Carter, “Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles,” Phys. Rev. Lett., 86, 5954 (2001). doi: 10.1103/PhysRevLett.86.5954

110. E. A. A. Jarvis and E. A. Carter, “Metallic Character of the Al2O3(0001)-(√31 x √31)R ± 9Surface Reconstruction,” J. Phys. Chem. B, 105, 4045 (2001). doi: 10.1021/jp003587c

109. A. Christensen and E. A. Carter, “Adhesion of ultrathin ZrO2(111) films on Ni(111) from first principles,” J. Chem. Phys114, 5816 (2001). doi: 10.1063/1.1352079

108. A. Christensen, E. A. A. Jarvis, and E. A. Carter, “Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces,” in Chemical Dynamics in Extreme Environments, edited by R. A. Dressler, Advanced Series in Physical Chemistry, 11, Series Editor: C. Y. Ng (World Scientific, Singapore, 2001), pp 490-546. doi: 10.1142/9789812811882_0010 (Online PDF)

107. R. L. Hayes, E. Fattal, N. Govind, and E. A. Carter, “Long Live Vinylidene! A New View of the H2C=C: → HC≡CH Rearrangement from ab Initio Molecular Dynamics,” J. Am. Chem. Soc., 123, 641 (2001). doi: 10.1021/ja000907x

106. E. A. A. Jarvis, R. L. Hayes, and E. A. Carter, “Effects of Oxidation on the Nanoscale Mechanisms of Crack Formation in Aluminum,” ChemPhysChem, 2, 55 (2001). doi: 10.1002/1439-7641(20010119)2:1<55::AID-CPHC55>3.0.CO;2-S

105. A. Christensen and E. A. Carter, “First-principles characterization of a heteroceramic interface: ZrO2(001) deposited on an α-Al2O3(1102) substrate,” Phys. Rev. B62, 16968 (2000). doi: 10.1103/PhysRevB.62.16968

104. Y. A. Wang and E. A. Carter, “Orbital-Free Kinetic Energy Density Functional Theory,” in Theoretical Methods in Condensed Phase Chemistry, S. D. Schwartz, Ed., within the series “Progress in Theoretical Chemistry and Physics,” Kluwer, 117-84 (2000). doi: 10.1007/0-306-46949-9_5 (Online PDF)

103. S. C. Watson and E. A. Carter, “Linear-scaling parallel algorithms for the first principles treatment of metals,” Comp. Phys. Comm., 128, 67 (2000). doi: 10.1016/S0010-4655(00)00064-3

102. E. A. A. Jarvis, E. Fattal, A. J. R. da Silva, and E. A. Carter, “Characterization of Photoionization Intermediates via ab Initio Molecular Dynamics,” J. Phys. Chem. A104, 2333 (2000). doi: 10.1021/jp9919866

101. E. Fattal and E. A. Carter, “Ab Initio Reaction Energetics of Phosgene Decomposition by Zn2+ and Ni Atoms: Implications for Gas Mask Filters,” J. Phys. Chem. A104, 2248 (2000). (Cover Article) doi: 10.1021/jp992964m

100. E. A. Carter and E. B. Stechel, “Tribute to William Andrew Goddard III,” J. Phys. Chem. A104, 2145 (2000). doi: 10.1021/jp000180z

99. Y. A. Wang, N. Govind, and E. A. Carter, “Orbital-free kinetic-energy density functionals with a density-dependent kernel,” Phys. Rev. B60, 16350 (1999). doi: 10.1103/PhysRevB.60.16350; Erratum: Phys. Rev. B64, 089903-1 (2001). doi: 10.1103/PhysRevB.64.089903

98. Y. A. Wang and E. A. Carter, “Improved lower bounds for uncertaintylike relationships in many-body systems,”Phys. Rev. A60, 4153 (1999). doi: 10.1103/PhysRevA.60.4153

97. F. Terstegen, E. A. Carter, and V. Buss, “Interconversion Pathways of the Protonated β-Ionone Schiff Base: An Ab Initio Molecular Dynamics Study,” Int. J. Quant. Chem., 75, 141 (1999). doi: 10.1002/(SICI)1097-461X(1999)75:3<141::AID-QUA4>3.0.CO;2-9

96. N. Govind, Y. A. Wang, and E. A. Carter, “Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems,” J. Chem. Phys., 110, 7677 (1999). doi: 10.1063/1.478679

95. H. H. Wadleigh III, I. V. Ionova, and E. A. Carter, “Generalized symmetric Rayleigh-Ritz procedure applied to the closed-shell Hartree-Fock problem,” J. Chem. Phys., 110, 4152 (1999). doi: 10.1063/1.478299

94. N. Rom, E. Fattal, A. K. Gupta, E. A. Carter, and D. Neuhauser, “Shifted-contour auxiliary-field Monte Carlo for molecular electronic structure,” J. Chem. Phys., 109, 8241 (1998). doi: 10.1063/1.477486

93. S. C. Watson and E. A. Carter, “Spin-dependent pseudopotentials,” Phys. Rev. B58, R13309 (1998). doi: 10.1103/PhysRevB.58.R13309

92. Y. A. Wang, N. Govind, and E. A. Carter, “Orbital-free kinetic-energy functionals for the nearly free electron gas,” Phys. Rev. B58, 13465 (1998). doi: 10.1103/PhysRevB.58.13465; Erratum: Phys. Rev. B64, 129901-1 (2001). doi: 10.1103/PhysRevB.60.17162

91. N. Govind, Y. A. Wang, A. J. R. da Silva, and E. A. Carter, “Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment,” Chem. Phys. Lett., 295, 129 (1998). doi: 10.1016/S0009-2614(98)00939-7

90. A. Christensen and E. A. Carter, “First-principles study of the surfaces of zirconia,” Phys. Rev. B58, 8050 (1998). doi: 10.1103/PhysRevB.58.8050

89. C. C. Tazartes, C. R. Anderson, and E. A. Carter, “Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory,” J. Comp. Chem., 19, 1300 (1998). doi: 10.1002/(SICI)1096-987X(199808)19:11<1300::AID-JCC10>3.0.CO;2-P

88. B. E. Koel, D. A. Blank, and E. A. Carter, “Thermpochemistry of the selective dehydrogenation of cyclohexane to benzene on Pt surfaces,” J. Mol. Catal A: Chemical., 131, 39 (1998). doi: 10.1016/S1381-1169(97)00255-0

87. A.J. R. da Silva, J. W. Pang, E. A. Carter, and D. Neuhauser, “Anharmonic Vibrations via Filter Diagonalization of ab Initio Dynamics Trajectories,” J. Phys. Chem. A.102, 881 (1998). doi: 10.1021/jp9727198

86. S. Watson, B. J. Jesson, E. A. Carter, and P. A. Madden, “Ab initio pseudopotentials for orbital-free density functionals,” Europhys. Lett.41, 37 (1998). doi: 10.1209/epl/i1998-00112-5

85. E. Fattal, M. R. Radeke, G. Reynolds, and E. A. Carter, “Ab Initio Structure and Energetics for the Molecular and Dissociative Adsorption of NH3 on Si(100)-2×1,” J. Phys. Chem. B101, 8658 (1997). doi: 10.1021/jp9712967

84. M. R. Radeke and E. A. Carter, “Ab Initio Dynamics of Surface Chemistry,” Ann. Rev. Phys. Chem.48, 243 (1997). doi: 10.1146/annurev.physchem.48.1.243

83. A. J. R. da Silva, H.-Y. Cheng, D. A. Gibson, K. L. Sorge, Z. Liu, and E. A. Carter, “Limitations of ab initio molecular dynamics simulations of simple reactions: F+ H2 as a orototype,” Spectrochimica Acta Part A53, 1285 (1997). doi: 10.1016/S1386-1425(97)89474-7

82. D. A. Gibson and E. A. Carter, “Ab initio molecular dynamics of pseudorotating Li5,” Chem. Phys. Lett.271, 266 (1997). doi: 10.1016/S0009-2614(97)00484-3

81. A. J. R. da Silva, M. R. Radeke, and E. A. Carter, “Ab initio molecular dynamics of H2 desorption from Si(100)-2×1,” Surf. Sci. Lett., 381, L628 (1997). doi: 10.1016/S0039-6028(97)00124-6

80. G. Reynolds and E. A. Carter, “Removal of the bottleneck in local correlation methods,” Chem. Phys. Lett.265, 660 (1997). doi: 10.1016/S0009-2614(96)01491-1

79. M. R. Radeke and E. A. Carter, “Ab initio derived kinetic Monte Carlo model of H2 desorption from Si(100)-2×1,” Phys. Rev. B55, 4649 (1997). doi: 10.1103/PhysRevB.55.4649

78. D. A. Gibson and E. A. Carter, “Generalized valence bond molecular dynamics at constant temperature,” Mol. Phys.89, 1265 (1996). doi: 10.1080/002689796173165

77. I. V. Ionova and E. A. Carter, “Error Vector Choice in Direct Inversion in the Iterative Subspace Method,” J. Comp. Chem.17, 1836 (1996). doi: 10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O

76. G. Reynolds, T. J. Martinez, and E. A. Carter, “Local weak pairs spectral and pseudospectral singles and doubles configuration interaction,” J. Chem. Phys.105, 6455 (1996). doi: 10.1063/1.472495

75. M. R. Radeke and E. A. Carter, “A dynamically and kinetically consistent mechanism for H2 adsorption/desorption from Si(100)-2×1,” Phys. Rev. B54, 11803 (1996). doi: 10.1103/PhysRevB.54.11803

74. L. E. Carter and E. A. Carter, ” Simulated reaction dynamics of F atoms on partially fluorinated Si(100) surfaces,” Surf. Sci.360, 200 (1996). doi: 10.1016/0039-6028(96)00620-6

73. M. R. Radeke and E. A. Carter, “Ab Initio explanation of the apparent violation of detailed balance for H2 adsorption/desorption from Si(100),” Surf. Sci.355, L289 (1996). doi: 10.1016/0039-6028(96)00607-3

72. L. E. Carter and E. A. Carter, “Ab Initio-Derived Dynamics for FReactions with Partially Fluorinated Si(100) Surfaces: Translational Activation as a Possible Etching Tool,” J. Phys. Chem.100, 873 (1996). doi: 10.1021/jp952905i

71. T. J. Martinez and E. A. Carter, “Pseudospectral Methods Applied to the Electron Correlation Problem,” in Modern Electronic Structure Theory Part II, D. R. Yarkony, editor, Advanced Series in Physical Chemistry, Vol. 2, pp 1132-1165 (World Scientific, Singapore, 1995). doi: 10.1142/9789812832115_0006

70. I. V. Ionova and E. A. Carter, “Direct inversion in the iterative subspace-induced acceleration of the ridge method for finding transition dtates,” J. Chem. Phys.103, 5437 (1995). doi: 10.1063/1.470579

69. T. J. Martinez and E. A. Carter, “Pseudospectral correlation methods on distributed memory parallel architectures,” Chem. Phys. Lett.241, 490 (1995). doi: 10.1016/0009-2614(95)00654-M

68. D. A. Gibson, I. V. Ionova, and E. A. Carter, “A comparison of Car-Parrinello and Born-Oppenheimer generalized valence bond molecular dynamics,” Chem. Phys. Lett.240, 261 (1995). doi: 10.1016/0009-2614(95)00537-E

67. T. J. Martinez and E. A. Carter, “Pseudospectral multireference single and double excitation configuration interaction,” J. Chem. Phys.102, 7564 (1995). doi: 10.1063/1.469088

66. T.-M. Chang and E. A. Carter, “Structures and Growth Mechanisms for Heteroepitaxial fcc(111) Thin Metal Films,” J. Phys. Chem.99, 7637 (1995). doi: 10.1021/j100019a051

65. Z. Liu, L. E. Carter, and E. A. Carter, “Full Configuration Interaction Molecular Dynamics of Naand Na3,” J. Phys. Chem.99, 4355 (1995). doi: 10.1021/j100013a001

64. M. R. Radeke and E. A. Carter, “Interfacial strain-enhanced reconstruction of Au multilayer films on Rh(100),” Phys. Rev. B51, 4388 (1995). doi: 10.1103/PhysRevB.51.4388

63. I. V. Ionova and E. A. Carter, “Orbital-based direct inversion in the iterative subspace for the generalized valence bond method,” J. Chem. Phys.102, 1251 (1995). doi: 10.1063/1.468912

62. L. E. Carter and E. A. Carter, “F2 reaction dynamics with defective Si(100): defect-insensitive surface chemistry,” Surf. Sci.323, 39 (1995). doi: 10.1016/0039-6028(94)00622-9

61. T.-M. Chang and E. A. Carter, “Mean-field theory of heteroepitaxial thin metal film morphologies,” Surf. Sci.318, 187 (1994). doi: 10.1016/0039-6028(94)90354-9

60. G. G. Reynolds and E. A. Carter, “Bimetallic Thermochemistry: Perturbations in M-H and M-C Bond Due to the Presence of M’,” J. Phys. Chem.98, 8144 (1994). doi: 10.1021/j100084a037

59. L. E. Carter and E. A. Carter, “Influence of single atomic height steps on F2 reactions with Si(100)-2×1,” J. Vac. Sci. Tech. A12, 2235 (1994). doi: 10.1116/1.579121

58. C. J. Wu, I. V. Ionova, and E. A. Carter, “First-principles-derived rate constants for H adatom surface diffusion on Si(100)-2×1,” Phys. Rev. B49, 13488 (1994). doi: 10.1103/PhysRevB.49.13488

57. I. V. Ionova and E. A. Carter, “O(N3) scaling of two-electron integrals during molecular geometry optimization,” J. Chem. Phys.100, 6562 (1994). doi: 10.1063/1.467065

56. T. J. Martinez and E. A. Carter, “Pseudospectral Møller-Plesset perturbation theory through third order,” J. Chem. Phys.100, 3631 (1994). doi: 10.1063/1.466350

55. L. E. Carter, S. Khodabandeh, P. C. Weakliem, and E. A. Carter, “First-principles-derived dynamics of F2 reactive scattering on Si(100)-2×1,” J. Chem. Phys.100, 2277 (1994). doi: 10.1063/1.466526

54. B. Hartke and E. A. Carter, “Ab Initio molecular dynamics simulated annealing at the generalized valence bond level. Application to a small nickel cluster,” Chem. Phys. Lett.216, 324 (1993). doi: 10.1016/0009-2614(93)90103-8

53. D. A. Gibson and E. A. Carter, “Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics,” J. Phys. Chem.97, 13429 (1993). doi: 10.1021/j100153a002

52. C. J. Wu, I. V. Ionova, and E. A. Carter, “Ab initio H2 desorption pathways for H/Si(100): the role of SiH2(a),” Surf. Sci.295, 64 (1993). doi: 10.1016/0039-6028(93)90185-M

51. L. E. Carter, P. C. Weakliem, and E. A. Carter, “Temperature and composition dependent structures of SixGe1-x/Si and SixGe1-x/Ge superlattices,” J. Vac. Sci. Tech. A11, 2059 (1993). doi: 10.1116/1.578410

50. T. J. Martinez and E. A. Carter, “Pseudospectral double excitation configuration interaction,” J. Chem. Phys.98, 7081 (1993). doi: 10.1063/1.464751

49. S. Khodabandeh and E. A. Carter, “Methyl Substitution in Carbenes: Lack of Steric or Hyperconjugative Stabilization Effects on the CH3CH Singlet-Triplet Splitting,” J. Phys. Chem.97, 4360 (1993). doi: 10.1021/j100119a018

48. B. C. Bolding and E. A. Carter, “Two-dimensional Metallic Adlayers: Dispersion Versus Island Formation,” in On Clusters and Clustering, From Atoms to Fractals, P. J. Reynolds, ed.; in the series “Random Processes and Materials,” (Elsevier, Amsterdam, 1993), 167. doi: 10.1016/B978-0-444-89022-1.50021-3

47. I. V. Ionova and E. A. Carter, “Ridge method for finding saddle points on potential energy surfaces,” J. Chem. Phys.98, 6377 (1993). doi: 10.1063/1.465100

46. H. Wang and E. A. Carter, “Metal-Metal Bonding in Engel-Brewer Intermetallics: ‘Anomalous’ Charge Transfer in ZrPt3,” J. Am. Chem. Soc.115, 2357 (1993). doi: 10.1021/ja00059a034

45. P. C. Weakliem and E. A. Carter, “Surface chemical reactions studied via ab initio-derived molecular dynamics simulations: Fluorine etching of Si(100),” J. Chem. Phys.98, 737 (1993). doi: 10.1063/1.464620

44. B. Hartke, D. A. Gibson, and E. A. Carter, “Multiple Time Scale Hartree-Fock Molecular Dynamics,” Int. J. Quantum Chem.45, 59 (1993). doi: 10.1002/qua.560450109

43. B. C. Bolding and E. A. Carter, “Minimization of Periodic-Boundary-Induced Strain in Interface Simulations,” Molecular Simulation9, 269 (1992). doi: 10.1080/08927029208047433

42. B. Hartke and E. A. Carter, “Ab initio molecular dynamics with correlated molecular wave functions: Generalized valence bond molecular dynamics and simulated annealing,” J. Chem. Phys.97, 6569 (1992). doi: 10.1063/1.463660

41. C. J. Wu and E. A. Carter, “Anisotropic diffusion of hydrogen atoms on the Si(100)-2×1 surface,” Phys. Rev. B, 46, 4651 (1992). doi: 10.1103/PhysRevB.46.4651

40. T. J. Martinez, A. Mehta, and E. A. Carter, “Pseudospectral full configuration interaction,” J. Chem. Phys.97, 1876 (1992). doi: 10.1063/1.463176; Erratum: 99, 4238 (1993). doi: 10.1063/1.466235

39. P. C. Weakliem, C. J. Wu, and E. A. Carter, “First-Principles-Derived Dynamics of a Surface Reaction: Fluorine Etching of Si(100),” Phys. Rev. Lett.69, 200 (1992). doi: 10.1103/PhysRevLett.69.200; Erratum: 69, 1475 (1992). doi: 10.1103/PhysRevLett.69.1475

38. P. C. Weakliem and E. A. Carter, “Surface and bulk equilibrium structures of silicon-germanium alloys from Monte Carlo simulations,” Phys. Rev. B45, 13458 (1992). doi: 10.1103/PhysRevB.45.13458

37. C. J. Wu and E. A. Carter, “Structures and adsorption energetics for chemisorbed fluorine atoms on Si(100)-2×1,”Phys. Rev. B45, 9065 (1992). doi: 10.1103/PhysRevB.45.9065

36. B. C. Bolding and E. A. Carter, “Effect of strain on thin film growth: deposition of Ni on Ag(100),” Surface Sci.,268, 142 (1992). doi: 10.1016/0039-6028(92)90957-8

35. P. C. Weakliem and E. A. Carter, “Constant temperature molecular dynamics simulations of Si(100) and Ge(100): Equilibrium structure and short-time behavior,” J. Chem. Phys.96, 3240 (1992). doi: 10.1063/1.461968

34. B. Hartke and E. A. Carter, “Spin eigenstate-dependent Hartree-Fock molecular dynamics,” Chem. Phys. Lett.,189, 358 (1992). doi: 10.1016/0009-2614(92)85215-V

33. H. Wang and E. A. Carter, “Metal-Metal Bonding in Transition-Metal Clusters with Open d Shells: Pt3,”J. Phys. Chem.96, 1197 (1992). doi: 10.1021/j100182a033

32. C. J. Wu and E. A. Carter, “Mechanistic Predictions for Fluorine Etching of Si(100),” J. Am. Chem. Soc.113, 9061 (1991). doi: 10.1021/ja00024a005

31. C. J. Wu and E. A. Carter, “Adsorption of hydrogen atoms on the Si(100)-2×1 surface: implications for the H2 desorption mechanism,” Chem. Phys. Lett.185, 172 (1991). doi: 10.1016/0009-2614(91)80159-U

30. C. J. Wu and E. A. Carter,”Ab Initio Thermochemistry for Unsaturated CHydrocarbons,” J. Phys. Chem.95, 8352 (1991). doi: 10.1021/j100174a058

29. B. C. Bolding and E. A. Carter, “Coverage and temperature dependence of the morphology of strained metal overlayers: Deposition of Pd on a bcc(110) substrate,” Phys. Rev. B44, 3251 (1991). doi: 10.1103/PhysRevB.44.3251

28. E. A. Carter and J. T. Hynes, “Solvation dynamics for an ion pair in a polar solvent: Time-dependent fluorescence and photochemical charge transfer,” J. Chem. Phys.94, 5961 (1991). doi: 10.1063/1.460431

27. G. W. Smith and E. A. Carter, “Interactions of NO and CO with Pd and Pt Atoms,” J. Phys. Chem.95, 2327 (1991). doi: 10.1021/j100159a040; Erratum: 95, 10828 (1991). doi: 10.1021/j100179a056

26. B. C. Bolding and E. A. Carter, “Simulation of lattice-strain-driven bcc → fcc phase transitions in Pd thin films,” Phys. Rev. B42, 11380 (1990). doi: 10.1103/PhysRevB.42.11380

25. P. C. Weakliem, G. W. Smith, and E. A. Carter, “Subpicosecond interconversion of buckled and symmetric dimers on Si(100),” Surface Sci. Lett.232, L219 (1990). doi: 10.1016/0039-6028(90)90112-L

24. C. J. Wu and E. A. Carter, “Ab Initio Bond Strengths in Ethylene and Acetylene,” J. Am. Chem. Soc.112, 5893 (1990). doi: 10.1021/ja00171a047

23. E. A. Carter, “Linking chemical physics and surface science: thermochemistry of adsorbates from purely gas phase data,” Chem. Phys. Lett.169, 218 (1990). doi: 10.1016/0009-2614(90)85191-E

22. E. A. Carter and B. E. Koel, “A method for estimating surface reaction energetics: Application to the mechanism of ethylene decomposition on Pt(111),” Surf. Sci.226, 339 (1990). doi: 10.1016/0039-6028(90)90498-W

21. J. T. Hynes, E. A. Carter, G. Ciccotti, H. J. Kim, D. A. Zichi, M. Ferrario, and R. Kapral, “Environmental Dynamics and Electron Transfer Reactions,” in Perspectives in Photosynthesis, J. Jortner and B. Pullman, eds. (Kluwer, Netherlands, 1990) 133-148. doi: 10.1007/978-94-009-0489-7_12

20. M. E. Bartram, B. E. Koel, and E. A. Carter, “Electronic effects of surface oxygen on the bonding of NO to Pt(111),” Surf. Sci.219, 467 (1989). doi: 10.1016/0039-6028(89)90522-0

19. E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, “Constrained reaction coordinate dynamics for the simulation of rare events,” Chem. Phys. Lett.156, 472 (1989). doi: 10.1016/S0009-2614(89)87314-2

18. E. A. Carter and J. T. Hynes, “Solute-Dependent Solvent Force Constants for Ion Pairs and Neutral Pairs in a Polar Solvent,” J. Phys. Chem.93, 2184 (1989). doi: 10.1021/j100343a002

17. E. A. Carter and W. A. Goddard III, “Chemisorption of oxygen, chlorine, hydrogen, hydroxide, and ethylene on silver clusters: A model for the olefin epoxidation reaction,” Surf. Sci.209, 243 (1989). doi: 10.1016/0039-6028(89)90071-X

16. E. A. Carter and W. A. Goddard III, “Relationships between Bond Energies in Coordinatively Unsaturated and Coordinatively Saturated Transition-Metal Complexes: A Quantitative Guide for Single, Double, and Triple Bonds,” J. Phys. Chem.92, 5679 (1988). doi: 10.1021/j100331a026

15. E. A. Carter and W. A. Goddard III, “The Surface Atomic Oxyradical Mechanism for Ag-Catalyzed Olefin Epoxidation,” J. Catal.112, 80 (1988). doi: 10.1016/0021-9517(88)90122-4

14. E. A. Carter and W. A. Goddard III, “The C=C Double Bond of Tetrafluoroethylene,” J. Am. Chem. Soc., 110, 4077 (1988). doi: 10.1021/ja00220a079

13. E. A. Carter and W. A. Goddard III, “Early- versus Late-Transition-Metal-Oxo Bonds: The Electronic Structure of VO+ and RuO+,” J. Phys. Chem.92, 2109 (1988). doi: 10.1021/j100319a005

12. E. A. Carter and W. A. Goddard III, “Correlation-consistent configuration interaction: Accurate bond dissociation energies from simple wave functions,” J. Chem. Phys.88, 3132 (1988). doi: 10.1063/1.453957

11. E. A. Carter and W. A. Goddard III, “Modeling Fischer-Tropsch Chemistry: The Thermochemistry and Insertion Kinetics of ClRuH(CH2),” Organometallics7, 675 (1988). doi: 10.1021/om00093a017

10. E. A. Carter and W. A. Goddard III, “Correlation-consistent singlet-triplet gaps in substituted carbenes,” J. Chem. Phys.88, 1752 (1988). doi: 10.1063/1.454099

9. E. A. Carter and W. A. Goddard III, “New Predictions for Singlet-Triplet Gaps of Substituted Carbenes,” J. Phys. Chem.91, 4651 (1987). doi: 10.1021/j100302a003

8. E. A. Carter and W. A. Goddard III, “Methylidene Migratory Insertion into an Ru-H Bond,” J. Am. Chem. Soc.109, 579 (1987). doi: 10.1021/ja00236a044

7. E. A. Carter and W. A. Goddard III, “Electron correlation, basis sets, and the methylene singlet-triplet gap, ” J. Chem. Phys., 86, 862 (1987). doi: 10.1063/1.452287

6. E. A. Carter and W. A. Goddard III, “Bonding in Transition-Metal Methylene Complexes. III. Comparison of Cr and Ru Carbenes; Prediction of Stable LnM(CXY) Systems,” J. Am. Chem. Soc.108, 4746 (1986). doi: 10.1021/ja00276a011

5. E. A. Carter and W. A. Goddard III, “Bonding in Transition-Metal-Methylene Complexes. II. (RuCH2)+, a Complex Exhibiting Low-Lying Methylidene-like and Carbene-like States,” J. Am. Chem. Soc.108, 2180 (1986). doi: 10.1021/ja00269a010

4. E. A. Carter and W. A. Goddard III, “Relation between Singlet-Triplet Gaps and Bond Energies,” J. Phys. Chem.90, 998 (1986). doi: 10.1021/j100278a006

3. M. A. Hanratty, E. A. Carter, J. L. Beauchamp, W. A. Goddard III, A. E. Illies, and M. T. Bowers, “Electronic states of chromium carbene ions characterized by high-resolution translational energy loss spectroscopy,” Chem. Phys. Lett.123, 239 (1986). doi: 10.1016/0009-2614(86)80064-1

2. W. A. Goddard III, J. J. Low, B. D. Olafson, A. Redondo, Y. Zeiri, M. L. Steigerwald, E. A. Carter, J. N. Allison, and R. Chang, “The Role of Oxygen and Other Chemisorbed Species on Surface Processes for Metals and Semiconductors; Approaches to Dynamical Studies of Surface Processes,” Proceedings of the Symposium on The Chemistry and Physics of Electrocatalysis, J. D. E. McIntyre, J. Weaver, and E. B. Yeager, Eds. (The Electrochemical Society, Inc., Pennington, New Jersey, 1984) Vol. 84-12, pp. 63-95. Online PDF

1. E. A. Carter and W. A. Goddard III, “The Chromium Methylidene Cation: CrCH2+,” J. Phys. Chem.88, 1485 (1984). doi: 10.1021/j150652a009