Parallel Data Architectures & Brain Computer Interface Group.

Lorem ipsum dolor sit amet, consectetur

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse nec molestie nunc. Aliquam euismod tortor nec lorem scelerisque, nec ullamcorper leo faucibus. Donec ultrices metus libero, nec sodales urna dapibus vel. Cras porttitor lorem semper, euismod purus...

Lorem ipsum dolor sit amet, consectetur adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam ullamcorper nec quam in finibus. Cras pretium pellentesque neque, ut convallis ipsum ultrices vitae. Ut in est in justo faucibus aliquet. Donec maximus turpis eu sem mattis, eget sollicitudin ex condimentum....

Lorem ipsum dolor sit amet

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis sit amet fermentum metus. Praesent sollicitudin turpis sed quam dignissim commodo. Phasellus gravida, metus at varius egestas, risus risus efficitur nibh, quis venenatis orci nunc mollis magna. Morbi...

Lorem ipsum dolor sit

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas lacinia lorem libero, quis semper mauris bibendum sed. Nulla consequat dui et rhoncus consequat. Aliquam ac velit a nisl fermentum condimentum quis nec magna. Sed rutrum malesuada mauris id auctor....

Efficient System and Devices

Architectural optimization has traditionally been a heuristic process involving multiple iterations before the design converges to the desired specifications. Multiple architectures are difficult to evaluate if RTL is written repeatedly for each design. The process becomes tedious if the design fails to meet target specifications and changes need to be made at the system level. This work aims to automate the process of architecture selection and provide energy-area-performance optimal solutions staring from the graphical timed data-flow Matlab/Simulink description of the algorithm.

Neuroscience Applications

Spike sorting is the process of determining which action potential originated from which neuron during extracellular recordings. Applications such as brain-machine interfaces (BMIs) require hardware spike sorting in order to 1) obtain single-unit activity and 2) perform data reduction for wireless transmission of data under limited-bandwidth conditions. Such systems must be low-power, low-area, high-accuracy, unsupervised, and able to operate in real time. Several detection, feature-extraction, and clustering algorithms for spike sorting are currently being evaluated in terms of accuracy versus computational complexity. The best algorithms will be implemented in hardware.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque ut lacus convallis, sodales eros nec, luctus orci. Etiam eu metus varius, iaculis est eu, semper magna. Nunc lectus risus, lobortis ut erat in, feugiat tincidunt justo. Donec ut pulvinar mauris. Sed velit mauris, tempor a interdum ultrices, blandit sed enim. Morbi ut viverra felis. In id tempus ante.

Donec iaculis gravida semper. Etiam ullamcorper mauris nec augue elementum, id vestibulum urna elementum. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Aliquam nec bibendum lorem, sed ultricies massa. Nam at ante urna. Nullam sollicitudin nec diam vitae mattis. Nullam id porta dui, id venenatis dui.

Cras scelerisque augue tristique sem finibus tempus. Donec rhoncus ut neque eu gravida. Nullam orci ipsum, eleifend vel aliquam vulputate, eleifend vel tortor. Etiam porttitor ligula nisl, quis pharetra libero sollicitudin ac. Integer eleifend faucibus nulla, eu tempor urna elementum placerat. Aenean tortor augue, efficitur sed purus ac, pellentesque ornare tortor. Sed ornare dui tortor, pretium vehicula sem accumsan a. Maecenas fringilla maximus diam, quis sagittis turpis faucibus vel. Nunc ultrices, est id rhoncus molestie, urna risus faucibus enim, a sagittis lacus ex sed dolor. Curabitur lacus enim, tincidunt sit amet erat non, semper suscipit quam.